

PAVEMENT EVALUATION TUCSON PAVEMENT RECONSTRUCTION PROGRAM CALLE POLAR TUCSON, ARIZONA

PREPARED FOR:

Kimley-Horn & Associates, Inc. 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

PREPARED BY:

Ninyo & Moore Geotechnical and Environmental Sciences Consultants 1991 East Ajo Way, Suite 145 Tucson, Arizona 85713

> December 9, 2015 Project No. 604817002

1991 East Ajo Way, Suite 145 • Tucson, Arizona 85713 • Phone (520) 577-7600 • Fax (520) 577-7606

December 9, 2015 Project No. 604817002

Mr. Rick Solis, P.E. Kimley-Horn 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

Subject: Pavement Evaluation Tucson Pavement Reconstruction Program – Calle Polar Tucson, Arizona

Dear Mr. Solis:

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, Ninyo & Moore has performed a pavement evaluation for the above-referenced site. The attached report presents our methodology, findings, conclusions, and recommendations regarding the geotechnical conditions at the project site.

We appreciate the opportunity to be of service to you during this phase of the project.

Sincerely, **NINYO & MOORE** Hoch Marek J. Kasztalski, PE, PMP, LEED AP Senior Geotechnical Engineer EXPIRES 9130 18

MJK/DT/FFN/tlp

Distribution: (1) Addressee (Electronic Copy)

Fred Narcaroti Principal/Tucson Office Manager

TABLE OF CONTENTS

Page

1.	INTRODUCTION								
2.	SCOPE OF SERVICES								
3.	SITE DESCRIPTION								
4.	PROPOSED CONSTRUCTION								
5.	EXISTING PAVEMENT CONDITION								
6.	FIELD EXPLORATION AND LABORATORY TESTING								
7.	SUBSURFACE CONDITIONS								
8.	CONCLUSIONS								
9.	RECOMMENDATIONS59.1. Recommended Pavement Structural Sections69.2. Earthwork69.2.1. Site Preparation69.2.2. Excavations69.2.3. Fill Materials79.2.4. Grading and Subgrade Preparation79.3. Pavement Design Summary89.3.1. Traffic89.3.2. R-Value and Resilient Modulus89.3.3. Statistical Parameters99.3.4. Serviceability Index99.3.5. Layer Coefficients99.3.6. Asphalt Pavement Section Recommendations10								
10.	SITE DRAINAGE								
11.	PRE-CONSTRUCTION CONFERENCE11								
12.	. CONSTRUCTION OBSERVATION AND TESTING								
13.	LIMITATIONS11								
14.	. REFERENCES								

TABLES

Table 1 – Summary of Statistical Parameters	9
Table 2 – Summary of Serviceability Parameters	9
Table 3 – Structural Pavement Sections for 20-Year Design Life	10

Figures

Figure 1 – Site Location Figure 2 – Boring Locations

Appendices

Appendix A – Boring Logs Appendix B – Laboratory Testing

Appendix C – Pavement and Core Summary

Appendix D – Traffic Data

Appendix E – Pavement Optimization Design Analysis by Tensar

1. INTRODUCTION

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, we have performed a pavement evaluation for the Calle Polar Pavement Reconstruction project between Nicaragua Drive and Escalante Road, in Tucson, Arizona. The purpose of our evaluation was to assess the pavement and subgrade conditions along the project alignment in order to provide geotechnical recommendations for design and construction. This report presents the results of our evaluation, conclusions, and recommendations regarding the proposed construction.

2. SCOPE OF SERVICES

The scope of our services generally included:

- Preparing a field testing plan and associated permit application for submittal to the City of Tucson (COT).
- Conducting a visual reconnaissance of the pavement along the alignment and marking out the boring locations.
- Notifying Arizona811 of our boring locations prior to conducting the field work.
- Arranging for traffic control measures to conduct the field work.
- Coring the existing asphaltic concrete (AC) pavement at two locations along the project alignment.
- Exploring the subsurface soils within the project limits by drilling, logging, and sampling two exploratory soil borings to approximate depths of 3 feet below ground surface (bgs). The boring logs are presented in Appendix A.
- Performing laboratory tests on selected samples collected from our borings to evaluate gradation and Atterberg limits. The results of the laboratory tests are included in Appendix B.
- Preparing this report presenting our findings, conclusions and recommendations regarding the proposed reconstruction.

inyo & Moo

Our scope of services did not include environmental consulting services such as hazardous waste sampling or analytical testing at the site. A detailed scope of services and estimated fee for such services can be provided upon request.

3. SITE DESCRIPTION

The project site is located in Section 30 of Township 14 South, Range 15 East relative to the Gila and Salt River Base Line and Meridian. The project alignment extends along Calle Polar between Nicaragua Drive and Escalante Road, in Tucson, Arizona (Figure 1).

At the time of our evaluation residential developments existed to the east of the project alignment. West of Calle Polar, the project alignment was adjacent to the Davis Monthan Air Force Base. The roadway section consisted of one travel lane in each direction, concrete sidewalks on the east side of the roadway, and no gutter. A wedge curb was observed on the east side, while no curb existing along most of the west side.

4. PROPOSED CONSTRUCTION

The COT has identified several segments of the existing street network for reconstruction and/or rehabilitation in fiscal year (FY) 2016 under Bid Package 2. The scope of this report includes Calle Polar between Nicaragua Drive and Escalante Road. The project alignment is approximately 1,200 feet long.

We understand that the COT anticipates full-depth reconstruction of the existing roadway along the project alignment. The City proposes a new pavement section consisting of 5 inches of AC per of the COT Department of Transportation Standard Specifications Section 406 over 5 inches of aggregate base (AB) per Section 303 of the COT Standard Specifications.

We further understand that the COT intends to use Tucson Department of Transportation (TDOT) AC Mix No. 2 PG 76-22TR+ for the surface layer and TDOT AC Mix No. 1 PG 70-10 for the underlying layer. Both layers are proposed to be 2.5 inches thick.

Due to conflicts with shallow utility lines, subgrade improvement by overexcavation will not be performed and the new pavement section will be constructed on subgrade improved with Geogrid (Tensar Geogrid TX5 or equivalent).

The scope of this exploration included evaluation of the existing pavement section and subgrade soils in order to provide recommendations for pavement reconstruction in accordance with the current COT practice. Calculations for the new pavement section supporting the new construction proposed by the COT are presented in Section 9.3 and in Appendix E of this report.

5. EXISTING PAVEMENT CONDITION

On September 28, 2015, Ninyo & Moore conducted a limited visual evaluation of the pavement surface along the project alignment. Based on our field observations, the AC pavement exhibited signs of severe distress in many locations along the project alignment primarily consisting of extensive alligator cracking with considerable spalling, longitudinal, transverse and irregular cracking, rutting ¹/₂-inch in both wheel tracks, and potholes. Some of the cracks exhibited evidence of past sealing. Asphaltic concrete patches were observed at some locations which were probably associated with past maintenance efforts (pothole and crack repairs) or with underground utility work. The crack widths generally varied between hairline (less than 1/8-inch) and over one inch.

In our opinion, the distress observed along the project alignment indicates structural failure and is related to a combination of pavement age, traffic, and environmental impacts.

6. FIELD EXPLORATION AND LABORATORY TESTING

On September 28, 2015, Ninyo & Moore conducted a geotechnical exploration in order to evaluate the subsurface conditions and collect AC cores and soil samples for laboratory testing. Our evaluation consisted of coring the existing AC pavement, drilling, logging, and sampling two small-diameter borings, denoted as B-1 and B-2, utilizing a CME-45 truck-mounted drill rig equipped with hollow-stem augers. The borings extended to depths of approximately 3 feet bgs. The approximate locations of the borings are depicted on Figure 2.

604817002 R Pavement Elevation

Ninyo & Moore personnel logged the borings in general accordance with the Unified Soil Classification System (USCS) and American Society for Testing and Materials (ASTM) D 2488 by observing cuttings and drive samples. Collected ring samples were trimmed in the field, wrapped in plastic bags, and placed in cylindrical plastic containers to retain in-place moisture conditions.

The soil samples collected from our drilling activities were transported to the Ninyo & Moore laboratory in Tucson, Arizona for geotechnical laboratory testing. The tests included gradation and Atterberg limits. A description of each laboratory test method and the test results are presented in Appendix B.

7. SUBSURFACE CONDITIONS

Our knowledge of the subsurface conditions at the project site is based on our field exploration, laboratory testing, and general experience in the area. More detailed stratigraphic information is presented on the boring logs in Appendix A, attached to this report. The boring logs contain our field and laboratory test results, as well as our interpretation of conditions believed to exist between actual samples retrieved. Therefore, these boring logs contain both factual and interpretive information. Lines delineating subsurface strata on the boring logs are intended to group soils having similar engineering properties and characteristics. They should be considered approximate as the actual transition between soil types (strata) may be gradual. A key to the soil symbols and terms used on the boring logs is provided in Appendix A.

7.1. Asphaltic Concrete

Asphaltic concrete pavement was encountered at the surface of each of our borings. The AC thickness varied between approximately 3 and 4 inches, in our borings. It should be noted that the thickness of the AC pavement between the sampling locations may vary and could be different from that encountered at our sampling locations. Detailed core descriptions are presented in Appendix C.

inyo « Moo

Aggregate base was not observed in our borings. It is possible the AB material blended with the native subgrade soils, such that delineation of the AB/subgrade interface was not easily interpreted.

7.2. Fill

Fill soils were observed under the AC in Boring B-2 and extended to an approximate depth of 2 feet bgs. The fill generally consisted of medium dense poorly graded sand.

7.3. Alluvium

Native alluvial soils were encountered below the pavement section and fill described above, and extended to the boring termination depths. The alluvium generally consisted of medium dense, clayey sands with varying amounts of gravel.

8. CONCLUSIONS

Based on the results of our visual and subsurface evaluations, laboratory testing, and data analysis, geotechnical considerations include the following:

- The on-site soils generally include clayey sands, with a plasticity index (PI) of 26. These soils may be sensitive to moisture content fluctuations and may be difficult to compact especially at higher moisture contents. The contractor should be aware of this condition.
- Due to the relatively widely spaced nature of our borings, soil conditions may differ from what was observed during our field exploration.
- The pavement exhibits significant distress in many locations along the project alignment consisting mainly of transverse, block and irregular cracking.
- Full-depth pavement reconstruction is considered for this project as proposed by the COT.

9. **RECOMMENDATIONS**

The following sections present our geotechnical recommendations for the project. If the proposed construction is changed from that discussed in this report, Ninyo & Moore should be contacted for additional recommendations.

9.1. Recommended Pavement Structural Sections

The recommended pavement sections are presented in the table below:

Pavement Section	Service Life (years)	AC (in) ¹	AB $(in)^2$				
COT Preferred Pavement with Geogrid	20	5	5				
Alternative Pavement Section without Geogrid	20	6	7				
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications							

 2 AB per Section 303 of the COT Specifications.

9.2. Earthwork

The following sections provide our earthwork recommendations for this project. In general, the earthwork specifications contained in the *City of Tucson/Pima County Standard Specifications for Public Improvements, 2003 Edition (COT/PC Specifications)* are expected to apply unless specifically noted.

9.2.1. Site Preparation

Construction areas should be cleared of deleterious materials, if any are present, including abandoned utilities, construction debris, vegetation, and any other material that might interfere with the performance or progress of the work. These materials should be disposed of at a legal dumpsite. Existing features that call for relocation or removal and extend below finish grade, if present, should be removed, and the resulting excavations backfilled with engineered fill.

9.2.2. Excavations

Our evaluation of the excavation characteristics of the on-site soils is based on the results of our exploratory borings, site observations, and experience with similar materials.

9.2.3. Fill Materials

Soils with PI values of 15 or less (as evaluated by ASTM D 4318) are generally suitable for use as engineered fill. Our Atterberg limits test indicated the PI value of 26. Based on this test result, some of the on-site soils are not suitable for re-use as engineered fill.

Engineered fill should not include organic material, construction debris, or other nonsoil fill materials. Rock particles and clay lumps should not be larger than 4 inches in dimension. Unsuitable material should be disposed of off-site or in non-structural areas.

9.2.4. Grading and Subgrade Preparation

In general, grading operations should be performed in accordance with Section 205 of the COT/PC Specifications.

Due to potential conflicts with underground utilities, we recommend that the subgrade be improved by the application of Geogrid (Tensar Geogrid TX5 or equivalent). Geogrid should be placed in accordance with the manufacturer's instructions.

Alternatively, if Geogrid is not applied we recommend new pavements be supported on 6 inches of subgrade that is compacted by appropriate mechanical methods to a relative compaction of 95 percent as evaluated by ASTM D 698 at a moisture content generally near optimum. The thickness of the improvement zone should be measured from the bottom of the AB layer.

In areas where excessive moisture is encountered so that the above compaction cannot be achieved and/or the subgrade surface is unstable and yielding (pumping) under the roller wheels, subgrade soils should be scarified to a depth of 12 inches, aerated, and recompacted as specified above. Alternatively, subgrade soils in problem areas should be and replaced with engineered fill to a depth of 12 inches below the bottom of the AB.

9.3. Pavement Design Summary

The following sections present our design assumptions and recommendations for the new flexible pavement section of Calle Polar as this roadway is scheduled for full-depth pavement reconstruction.

The pavement section was developed using the Active Practices Guidelines issued by the COT Department of Transportation (Guidelines) and the Arizona Department of Transportation (ADOT) Preliminary Engineering and Design Manual (PEDM). We assumed that the subgrade will be improved by the application of Geogrid or overexcavation, as outlined in Section 9.2.4 of this report. The new pavement sections are designed for a 20-year service life.

9.3.1. Traffic

The future traffic numbers used in this report are based on traffic counts provided by Kimley-Horn and Associates, Inc. (KHA), and later communication with the KHA. This information is presented in Appendix D. Based on the above information, and using the procedures outlined in the Guidelines and PEDM, the design number of equivalent single axle loads (ESALs) for the design lane during the 20-year design period was calculated as approximately 4,358,830.

9.3.2. R-Value and Resilient Modulus

The analysis for the design R-value for the pavement section has been performed based on procedures detailed in the Guidelines and the PEDM, using a correlated R-value. The correlated R-value was derived from the PI and percent passing No. 200 Sieve test results. The R-value calculated for these methods for this project is 27. In the interest of conservatism conservatism, we recommend that an R-value of 25 be used for pavement design for this project.

If the project needs fill from an off-site source, we recommend the soils used for subgrade support should have an R-value of 25 or more. If during construction, the subgrade is found to vary from the expected soil conditions, we should be contacted so

Vinyo « Moore

we may re-evaluate our recommended R-values. Based on the above design R-values, the design subgrade resilient modulus (M_R) value of 10,844 pounds per square inch (psi) was calculated in accordance with the Guidelines.

9.3.3. Statistical Parameters

A standard deviation of 0.40 was used for design of the flexible pavement in accordance with the Guidelines. The level of reliability and standard normal deviation (Z_R) values were selected in accordance with the Guidelines for the arterial functional classification. Their respective values are presented in the table below:

 Table 1 – Summary of Statistical Parameters

Roadway	Functional Classification	Standard Deviation	Level of Reliability	Standard Normal Deviation	
Calle Polar	Arterial	0.40	95 %	-1.645	

9.3.4. Serviceability Index

Initial and terminal serviceability indices were selected for the pavement design of the roadways in accordance with the Guidelines. A summary of the serviceability indices for each roadway is provided in the table below:

 Table 2 – Summary of Serviceability Parameters

Roadway	Functional Classification	Initial Serviceability Index	Terminal Serviceability Index	Change in Serviceability
Calle Polar	Arterial	4.5	2.5	2.0

9.3.5. Layer Coefficients

The following structural coefficients were used for the pavement structure in accordance with the Guidelines:

• AC: 0.44.

• AB: 0.14.

A drainage coefficient of 1.25 was used for the AB coefficient as recommended in the Guidelines.

As mentioned in Section 4 above, due to conflicts with existing shallow utilities, it is recommended that the subgrade be improved using Geogrid (Tensar Geogrid TX5 or equivalent). In this case the AB layer coefficient is 0.286.

9.3.6. Asphalt Pavement Section Recommendations

The structural number (SN) was calculated based on the parameters described above. The table below presents the calculated SN value and the recommended structural pavement sections. The AC thickness meets the COT requirements. Supporting documentation of the pavement optimization design using Geogrid is presented in Appendix E:

Roadway	SN	$AC(in)^{1}$	AB $(in)^2$
COT Preferred Pavement with Geogrid	3.99	5	5
Alternative Pavement without Geogrid	3.81	6	7
Notes:			

Table 3 – Structural Pavement Sections for 20-Year Design Life

¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.

The above pavement structural section has been designed with the assumption that the subgrade is prepared by as recommended in Section 9.2.4.

10. SITE DRAINAGE

Surface drainage should be provided to divert water away from paved surfaces. Surface water should also not be permitted to pond on or below pavement areas. Positive drainage for this project is defined as a slope of 2 percent or more for a distance of 5 feet or more away from the

pavements. To deter accumulation of water below the new pavement sections, the bottom of the overexcavated zone below the new pavement should be sloped toward the edges of the roadway.

11. PRE-CONSTRUCTION CONFERENCE

We recommend that a pre-construction conference be held. Representatives of the owner, the civil engineer, Ninyo & Moore, and the contractor should be in attendance to discuss the project plans and schedule. Our office should be notified if the project description included herein is incorrect or if the project characteristics are significantly changed.

12. CONSTRUCTION OBSERVATION AND TESTING

During construction operations, we recommend that Ninyo & Moore perform observation and testing services for the project. These services should be performed to evaluate exposed subgrade conditions, including the extent and depth of overexcavation, to evaluate the suitability of proposed borrow materials for use as engineered fill and to observe placement and test compaction of fill soils. Qualified subcontractors utilizing appropriate techniques and construction materials should perform construction of the proposed improvements.

13. LIMITATIONS

The field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation will be performed upon request. Please also note that our evaluation was limited to assessment of the geotechnical aspects of the project, and did not include evaluation of structural issues, environmental concerns, or the presence of hazardous materials.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document.

This report is intended for design purposes only. It does not provide sufficient data to prepare an accurate bid by contractors. It is suggested that the bidders and their geotechnical consultant perform an independent evaluation of the subsurface conditions in the project areas. The independent evaluations may include, but not be limited to, review of other geotechnical reports prepared for the adjacent areas, site reconnaissance, and additional exploration and laboratory testing.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are encountered, our office should be notified and additional recommendations, if warranted, will be provided upon request. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

604817002 R Pavement Elevation

inyo & Moo

14. **REFERENCES**

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards.

- Arizona Department of Transportation (ADOT), 1989, Preliminary Engineering and Design Manual, Materials Section, 3rd Edition: dated March.
- City of Tucson, Arizona, Department of Transportation, Engineering Division, 1987, Active Practices Guidelines: dated June 1.

Ninyo & Moore, In-house proprietary information.

	Ninyo &	Moore	BORING LOCATIONS	FIGURE
Approximate Scale: 1 inch = 230 feet Note: Dimensions, directions, and locations are approximate.	PROJECT NO: 604817002	DATE: 12/15	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - CALLE POLAR TUCSON, ARIZONA	2

APPENDIX A

BORING LOGS

Field Procedure for the Collection of Relatively Undisturbed Samples

Relatively undisturbed soil samples were obtained in the field using the following methods.

The Modified Split-Barrel Drive Sampler

The sampler, with an external diameter of 3.0 inches, was lined with 1-inch long, thin brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a hammer or the Kelly bar of the drill rig in general accordance with ASTM D 3550. The driving weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer or bar, and the number of blows per foot of driving are presented on the boring logs as an index to the relative resistance of the materials sampled. The samples were removed from the sample barrel in the brass rings, sealed, and transported to the laboratory for testing.

		SSIFICATION	СН	ART PER A	STM D 2488]			GRAI	N SIZE		
DD				SECON	DARY DIVISIONS		DESC		SIEVE	GRAIN	APPROXIMATE	
		510113	GR	OUP SYMBOL	GROUP NAME		DESCRIPTION		SIZE	SIZE	SIZE	
		CLEAN GRAVEL		GW	well-graded GRAVEL		Во	ulders	> 12"	> 12"	Larger than	
		less than 5% fines		GP	poorly graded GRAVEL						basketball-sized	
	GRAVEI			GW-GM	well-graded GRAVEL with silt		Co	bbles	3 - 12"	3 - 12"	Fist-sized to basketball-sized	
	more than	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt							
	coarse	CLASSIFICATIONS 5% to 12% fines		GW-GC	well-graded GRAVEL with clay			Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized	
	retained on			GP-GC	poorly graded GRAVEL with clay		Gravel				Pag sized to	
	INO. 4 SIEVE	GRAVEL with		GM	silty GRAVEL			Fine	#4 - 3/4"	0.19 - 0.75"	thumb-sized	
COARSE- GRAINED		FINES more than		GC	clayey GRAVEL			0	#40 #4	0.070 0.40"	Rock-salt-sized to	
SOILS		12% fines		GC-GM	silty, clayey GRAVEL			Coarse	#10 - #4	0.079 - 0.19"	pea-sized	
50% retained		CLEAN SAND less than 5% fines	CLEAN SAND		SW	well-graded SAND		Sand	Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to
on No. 200 sieve	SAND 50% or more of coarse fraction passes No. 4 sieve			SP	poorly graded SAND						rock-salt-sized	
		SAND with DUAL CLASSIFICATIONS 5% to 12% fines		SW-SM	well-graded SAND with silt			Fine	#200 - #40	0.0029 -	Flour-sized to	
				SP-SM	poorly graded SAND with silt					0.017	30gai-3i2eu	
				SW-SC	well-graded SAND with clay		Fines		Passing #200	< 0.0029"	Flour-sized and smaller	
				SP-SC	poorly graded SAND with clay							
		SAND with FINES more than 12% fines		SM	silty SAND		PLASTICITY CHART				•	
				SC	clayey SAND							
				SC-SM	silty, clayey SAND		7					
				CL	lean CLAY		° 6					
	SILT and	INORGANIC		ML	SILT		(Id) 5					
	CLAY liquid limit			CL-ML	silty CLAY			D		CH or OF		
FINE-	less than 50%	OBCANIC		OL (PI > 4)	organic CLAY		≚ 3	p				
SOILS		ORGANIC		OL (PI < 4)	organic SILT			D	CL or (WH or OH	
50% or				СН	fat CLAY		I SV 1					
No. 200 sieve	SILT and CLAY	INORGANIC		MH	elastic SILT		CL-ML ML or OL					
	liquid limit 50% or more	OPCANIC		OH (plots on or above "A"-line)	organic CLAY			0 10	20 30 40	50 60 70	80 90 100	
		URGANIC		OH (plots below "A"-line)	organic SILT				LIQUID	LIMIT (LL), %	5	
	Highly Organic Soils			PT	Peat							

APPARENT DENSITY - COARSE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
DENSITY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Loose	≤4	≤ 8	<u>≤</u> 3	≤ 5		
Loose	5 - 10	9 - 21	4 - 7	6 - 14		
Medium Dense	11 - 30	22 - 63	8 - 20	15 - 42		
Dense	31 - 50	64 - 105	21 - 33	43 - 70		
Very Dense	> 50	> 105	> 33	> 70		

Ninyo & Moore

CONSISTENCY - FINE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
CONSIS- TENCY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Soft	< 2	< 3	< 1	< 2		
Soft	2 - 4	3 - 5	1 - 3	2 - 3		
Firm	5 - 8	6 - 10	4 - 5	4 - 6		
Stiff	9 - 15	11 - 20	6 - 10	7 - 13		
Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26		
Hard	> 30	> 39	> 20	> 26		

USCS METHOD OF SOIL CLASSIFICATION

Explanation of USCS Method of Soil Classification DATE

DEPTH (feet)	Bulk SAMPLES	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BOR	ING LOG EX	PLANATION S	SHEET	
0							Bulk sample.				
							Modified split-barrel	drive sampler. lified split-barrel dri	ve samnler		
									ve sampler.		
							Sample retained by ot	hers.			
							Standard Penetration	Test (SPT).			
5 -	\Box						No recovery with a SI	PT.			
		XX/XX					Shelby tube sample. I	Distance pushed in in	nches/length of sample	recovered in inches.	
							No recovery with She	lby tube sampler.			
							Continuous Push Sam	ple.			
			Ş				Seepage.				
10-			ļi. ₩ļi				Groundwater encount Groundwater measure	ered during drilling.			
						-					
						SM	MAJOR MATERIAL Solid line denotes uni	<u>TYPE (SOIL)</u> : t change.			
						CL	Dashed line denotes n	naterial change.			
							Attitudes: Strike/Dip				
							c: Contact				
15 -							J: Joint f: Fracture				
							F: Fault				
							s: Shear				
	$\left \right $						bss: Basal Slide Surfa	ce			
							sz: Shear Zone				
							sbs: Shear Bedding Surface				
							The total depth line is	a solid line that is d	rawn at the bottom of	the boring.	
20							<u> </u>		BORINGLOG	<u> </u>	
			\overline{n}		&	AAn	nre		Explanation of Boring Log System	mbols	
			Э					PROJECT NO.	DATE	FIGURE	

SJLES			(-			DATE DRILLED 9/28/15 BORING NO. B-1						
et) SAMI	р	(%)	(PCF					FICATION .C.S.	IFICATION S.C.S.	FICATION S.C.S.	MBOL FICATION .C.S.	GROUND ELEVATION 2,696' ± (MSL) SHEET 1 OF 1
TH (fe	/S/FO	URE	ISITY	MBOI		FICA.	FICA C.S.					FICA S.C.S.
DEP	BLOW	NOIST	Y DEN	SΥ	LASS U.S	DRIVE WEIGHT 140 lbs. (Automatic) DROP 30"						
	_		DR		U U	Ö	Ū	CI	U	SAMPLED BY <u>NAG</u> LOGGED BY <u>NAG</u> REVIEWED BY <u>DT</u>		
0						DESCRIPTION/INTERPRETATION						
					SC	ALUVIUM:						
						Reddish brown, dry, medium dense, clayey SAND; few gravel.						
	26											
	20											
						Total Depth = 3 feet. Groundwater not encountered during drilling.						
						Backfilled and asphalt conrete patched on 9/28/15 shortly after completion of drilling.						
5						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher						
						level due to seasonal variations in precipitation and several other factors as discussed in the report.						
						The ground elevation shown above is an estimation only. It is based on our interpretation						
						of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.						
15												
	^	 		<u> </u>		BORING LOG						
			10	Sz		Tucson Pavement Reconstruction Program - Calle Polar Tucson, Arizona						
		J				PROJECT NO. DATE FIGURE 604817002 12/15 B-1						

	IPLES			F)			DATE DRILLED 9/28/15 BORING NO. B-2				
eet)	SAM	Ю	(%)	Y (PC	_	ATION	GROUND ELEVATION 2,698' ± (MSL) SHEET 1 OF 1				
TH (f		NS/F0	TURE	NSIT	MBC	siFICA S.C.S	SIFIC/ S.C.S	SIFIC, S.C.S	S.C.S	SIFIC, S.C.S	METHOD OF DRILLING CME-45, 8" Hollow Stem Auger (Southlands)
DEP	Bulk riven	BLO	MOIS	ζΥ DE	S	U.	DRIVE WEIGHT 140 lbs. (Automatic) DROP 30"				
				DF		0	SAMPLED BY NAG LOGGED BY NAG REVIEWED BY DT				
0						0.0	ASPHALT CONRETE: Approximately 4 inches thick.				
-						52	FILL: Reddish brown, moist, loose, poorly graded SAND; trace gravel.				
-		35				SC	Light brown, dry, medium dense, clayey SAND.				
-							Total Depth = 3 feet. Groundwater not encountered during drilling. Backfilled and asphalt concrete patched on 9/28/15 shortly after completion of drilling.				
5 -							Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.				
-							The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.				
-											
-											
15 -											
-											
-											
-											
20	<u> </u>)		<u> </u>		BORING LOG				
		VÌ	<u>n</u>	10	Se	MO	Tucson Pavement Reconstruction Program - Calle Polar Tucson, Arizona				
		V	J				PROJECT NO. DATE FIGURE 604817002 12/15 B-2				

APPENDIX B

LABORATORY TESTING

Classification

Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings in Appendix A.

Gradation Analysis

One gradation analysis test was performed on a selected representative soil sample in general accordance with ASTM D 422. The grain-size distribution curve is shown in Figure B-1. These test results were utilized in evaluating the soil classification in accordance with the USCS.

Atterberg Limits

Tests were performed on a selected representative fine-grained soil sample to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. These test results were utilized to evaluate the soil classification in accordance with the USCS. The test results and classifications are shown on Figure B-2.

SYMBOL	LOCATION	DEPTH (FT)	LIQUID LIMIT, LL	PLASTIC LIMIT, PL	PLASTICITY INDEX, PI	USCS CLASSIFICATION (Fraction Finer Than No. 40 Sieve)	USCS (Entire Sample)
•	B-1	1.5-3.0	39	13	26	CL	SC

Ninyo «	Moore	ATTERBERG LIMITS TEST RESULTS	FIGURE	
PROJECT NO.	DATE	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - CALLE POLAR	B_ 2	
604817001	12/15		ב-מ	

APPENDIX C

PAVEMENT AND CORE SUMMARY

TUCSON PAVEMENT REHABILITATION PROGRAM - FY 16

CALLE POLAR - PAVEMENT AND CORE SUMMARY

No.	Location	Approximate AC thickness (in)*	Recovered AC Thickness (in)	Core Description	Pavement Condition
B-1	SB, 440 ft north of Barrow Street	3	3	One lift, numerous voids.	Extensive alligator, longitudinal, transverse and block cracking, rutting along wheel paths, patches.
B-2	SB, 120 ft south of Barrow Street	4	4	Two lifts, 2" and 2", numerous voids.	Extensive alligator, longitudinal, transverse and block cracking, rutting along wheel paths, patches.

Notes:

* Measured in the boring

APPENDIX D

TRAFFIC DATA

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-001 Station ID: Wed 10/14/2015 Calle Polar btwn. Nicaragua Dr. & Barrow St. 32.179560, -110.853668 Latitude: 0' 0.000 Undefined

Northbound												La		Underined
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	TIrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/14/15	0	18	3	0	0	0	0	0	0	0	0	0	0	21
01:00	0	5	2	0	0	0	0	0	0	0	0	0	0	7
02:00	0	11	1	0	0	0	0	0	0	0	0	0	0	12
03:00	0	24	6	0	0	0	0	0	0	0	0	0	0	30
04:00	0	60	16	0	1	0	0	0	0	0	0	0	0	77
05:00	1	208	82	1	4	0	0	0	0	0	0	0	0	296
06:00	2	352	122	2	1	0	0	2	2	0	0	0	0	483
07:00	3	499	95	1	3	0	0	1	1	0	2	0	0	605
08:00	4	330	53	0	1	1	0	1	0	0	0	0	1	391
09:00	1	250	61	0	1	0	0	1	2	0	0	0	0	316
10:00	1	192	60	3	2	0	0	0	0	0	0	1	0	259
11:00	0	232	55	0	4	0	0	2	1	1	0	1	0	296
12 PM	0	207	47	3	3	2	0	0	0	1	0	0	1	264
13:00	0	212	51	2	4	3	0	2	1	2	1	1	1	280
14:00	1	209	49	1	1	1	0	1	1	0	2	0	2	268
15:00	1	191	43	7	0	1	0	0	0	1	1	0	1	246
16:00	1	182	39	3	0	0	0	1	2	0	1	0	0	229
17:00	1	199	34	1	6	1	0	0	0	0	0	1	1	244
18:00	2	162	31	4	0	4	0	0	0	0	0	0	0	203
19:00	0	114	20	1	3	1	0	0	1	0	0	0	0	140
20:00	0	60	13	1	0	0	0	0	0	0	0	0	0	74
21:00	0	47	5	2	1	0	0	0	0	0	0	0	0	55
22:00	0	47	2	0	0	0	0	0	0	0	0	0	0	49
23:00	0	22	6	0	0	0	0	0	0	0	0	0	0	28
Day	18	3833	896	32	35	1/	٥	11	11	5	7	1	7	1873
Total	10	5055	030	52	55	14	0			5	,	-	,	4075
Percent	0.4%	78.7%	18.4%	0.7%	0.7%	0.3%	0.0%	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%	
AM Peak	08:00	07:00	06:00	10:00	05:00	08:00		06:00	06:00	11:00	07:00	10:00	08:00	07:00
Vol.	4	499	122	3	4	1		2	2	1	2	1	1	605
PM Peak	18:00	13:00	13:00	15:00	17:00	18:00		13:00	16:00	13:00	14:00	13:00	14:00	13:00
Vol.	2	212	51	7	6	4		2	2	2	2	1	2	280
Grand	18	3833	896	32	35	14	0	11	11	5	7	4	7	4873
Iotal	0.40/	70 70	10 10	0.70/	0.70/	0.00/	0.001	0.001	0.001	0.40/	0.40/	0.40/	0.40/	-
Percent	0.4%	18.1%	18.4%	0.7%	0.7%	0.3%	0.0%	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-001 Station ID: Wed 10/14/2015 Calle Polar btwn. Nicaragua Dr. & Barrow St. 32.179560, -110.853668 Latitude: 0' 0.000 Undefined

Southbound												La		Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/14/15	0	31	11	0	0	0	0	0	0	0	0	0	0	42
01:00	0	18	1	0	0	0	0	0	0	0	0	0	0	19
02:00	0	18	3	0	0	0	0	0	0	0	0	0	0	21
03:00	1	14	3	0	0	0	0	0	0	0	0	0	0	18
04:00	0	21	7	0	0	0	0	0	0	0	0	0	0	28
05:00	0	52	18	1	1	0	1	0	0	0	0	0	0	73
06:00	1	95	33	3	3	0	0	0	2	0	0	1	2	140
07:00	0	145	43	4	0	1	1	1	0	0	0	0	1	196
08:00	1	134	27	2	1	0	1	0	3	1	0	0	0	170
09:00	0	153	30	2	0	0	0	1	2	0	0	2	1	191
10:00	0	191	39	2	1	0	1	3	2	0	1	0	1	241
11:00	2	250	65	1	4	1	0	2	1	0	2	0	1	329
12 PM	0	289	64	0	4	0	1	0	2	0	1	0	0	361
13:00	1	283	66	2	2	0	0	0	1	0	2	1	0	358
14:00	1	373	91	4	6	1	0	3	1	0	1	0	0	481
15:00	0	454	143	3	5	0	1	4	5	1	2	1	2	621
16:00	2	580	156	4	2	0	1	2	1	0	4	1	2	755
17:00	0	535	114	3	3	0	1	4	0	1	5	0	1	667
18:00	1	370	60	2	0	1	1	1	0	1	2	2	1	442
19:00	0	272	55	0	2	0	1	0	0	2	0	0	0	332
20:00	0	253	57	0	0	0	0	1	0	0	0	1	1	313
21:00	0	168	27	0	0	1	0	0	0	0	0	0	0	196
22:00	0	102	26	0	0	0	0	0	0	0	0	0	0	128
23:00	0	65	10	0	0	0	0	0	0	0	0	0	0	75
Day	10	4866	11/0	33	34	5	10	22	20	6	20	0	13	6107
Total	10	4800	1149		54	5	10	22	20	0	20	9	15	0197
Percent	0.2%	78.5%	18.5%	0.5%	0.5%	0.1%	0.2%	0.4%	0.3%	0.1%	0.3%	0.1%	0.2%	
AM Peak	11:00	11:00	11:00	07:00	11:00	07:00	05:00	10:00	08:00	08:00	11:00	09:00	06:00	11:00
Vol.	2	250	65	4	4	1	1	3	3	1	2	2	2	329
PM Peak	16:00	16:00	16:00	14:00	14:00	14:00	12:00	15:00	15:00	19:00	17:00	18:00	15:00	16:00
Vol.	2	580	156	4	6	1	1	4	5	2	5	2	2	755
. .														
Grand	10	4866	1149	33	34	5	10	22	20	6	20	9	13	6197
Iotal	0.00/	70 50/	40 50/	0 50/	0 50/	0.40/	0.00/			0.40/		0.40/	0.00/	
Percent	0.2%	78.5%	18.5%	0.5%	0.5%	0.1%	0.2%	0.4%	0.3%	0.1%	0.3%	0.1%	0.2%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

> Site Code: 15-1283-001 Station ID: Wed 10/14/2015 Calle Polar btwn. Nicaragua Dr. & Barrow St. 32.179560, -110.853668 Latitude: 0' 0.000 Undefined

Northbound. Southbound Cars & 2 Axle 2 Axle 3 Axle 4 Axle <5 Axle 5 Axle <6 Axle 6 Axle >6 Axle Start >6 Axle Time Bikes TIrs Lona Buses 6 Tire Sinale Sinale Double Double Double Multi Multi Multi Total 10/14/15 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12 PM 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 Dav Total Percent 0.3% 78.6% 18.5% 0.6% 0.6% 0.2% 0.1% 0.3% 0.3% 0.1% 0.2% 0.1% 0.2% AM Peak 08:00 07:00 06:00 06:00 11:00 07:00 05:00 11:00 06:00 08:00 07:00 09:00 06:00 07:00 Vol. PM Peak 16:00 16:00 16:00 15:00 17:00 18:00 12:00 14:00 15:00 13:00 16:00 13:00 15:00 16:00 Vol. Grand Total 0.3% 78.6% 18.5% 0.6% 0.6% 0.2% 0.1% 0.3% 0.3% 0.1% 0.2% 0.1% 0.2% Percent

APPENDIX E

PAVEMENT OPTIMIZATION DESIGN ANALYSIS BY TENSAR

SpectraPave4 PRO™ Tensar Pavement Optimization Design Analysis

Design Parameters for AASHTO (1993) Equation

Reliability (%)	= 95	Initial Serviceability	= 4.5
Standard Normal Deviate	= -1.645	Terminal Serviceability	= 2.5
Standard Deviation	= 0.4	Change in Serviceability	= 2

Aggregate fill shall conform to following requirement:

D50 <= 27mm (Base course)

Unstabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	ACC1 Asphalt Wearing Course		0.440	N/A
ABC	Aggregate Base Course	20	0.140	1.25

Stabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	ACC1 Asphalt Wearing Course		0.440	N/A
MSL	MSL Mechanically Stabilized Base Cour		0.286	1.25

Unstabilized Pavement

Subgrade Modulus = 10,844 (psi) Structural Number = 3.865 Calculated Traffic (ESALs) = 4,763,000

Stabilized Pavement

Subgrade Modulus = 10,844 (psi) Structural Number = 3.988 Calculated Traffic (ESALs) = 5,872,000

LIMITATIONS OF THE REPORT

The designs, illustration nature, and do not con recommendations car	The designs, illustrations, information and other content included in this report are necessarily general and conceptual in nature, and do not constitute engineering advice or any design intended for actual construction. Specific design recommendations can be provided as the project develops.									
Project Name	Project Name Calle Polar									
Company Name		Tensar								
Designer	Schlessinger	Date	11/30/15							

This document was prepared using SpectraPave4 PRO™ Software Version 4.6.1 Developed by Tensar International Corporation Copyright 1998 - 2014, All Rights Reserved.

PAVEMENT EVALUATION TUCSON PAVEMENT RECONSTRUCTION PROGRAM ELM STREET TUCSON, ARIZONA

PREPARED FOR:

Kimley-Horn & Associates, Inc. 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

PREPARED BY:

Ninyo & Moore Geotechnical and Environmental Sciences Consultants 1991 East Ajo Way, Suite 145 Tucson, Arizona 85713

> December 16, 2015 Project No. 604817002

1991 East Ajo Way, Suite 145 • Tucson, Arizona 85713 • Phone (520) 577-7600 • Fax (520) 577-7606

December 16, 2015 Project No. 604817002

Mr. Rick Solis, P.E. Kimley-Horn 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

Subject: Pavement Evaluation Tucson Pavement Reconstruction Program – Elm Street Tucson, Arizona

Dear Mr. Solis:

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, Ninyo & Moore has performed a pavement evaluation for the above-referenced site. The attached report presents our methodology, findings, conclusions, and recommendations regarding the geotechnical conditions at the project site.

We appreciate the opportunity to be of service to you during this phase of the project.

Marek J. Kasztalski, PE, PMP, LEED AP Senior Geotechnical Engineer 72J

Fred Narcaroti Principal/Tucson Office Manager

MJK/DT/FFN/tlp

Distribution: (1) Addressee (Electronic Copy)

TABLE OF CONTENTS

Page

1.	INTRODUCTION
2.	SCOPE OF SERVICES
3.	SITE DESCRIPTION
4.	PROPOSED CONSTRUCTION
5.	EXISTING PAVEMENT CONDITION
6.	FIELD EXPLORATION AND LABORATORY TESTING
7.	SUBSURFACE CONDITIONS
8.	CONCLUSIONS
9.	RECOMMENDATIONS.59.1. Recommended Pavement Structural Sections59.2. Earthwork69.2.1. Site Preparation69.2.2. Excavations69.2.3. Fill Materials69.2.4. Grading and Subgrade Preparation79.3. Pavement Design Summary79.3.1. Traffic89.3.2. R-Value and Resilient Modulus89.3.3. Statistical Parameters99.3.4. Serviceability Index99.3.5. Layer Coefficients99.3.6. Asphalt Pavement Section Recommendations10
10.	SITE DRAINAGE
11.	PRE-CONSTRUCTION CONFERENCE11
12.	CONSTRUCTION OBSERVATION AND TESTING11
13.	LIMITATIONS11
14.	REFERENCES

<u>Tables</u>

Table 1 – R-value Summary	8
Table 2 – Summary of Statistical Parameters	9
Table 3 – Summary of Serviceability Parameters	9
Table 4 – Structural Pavement Sections for 20-Year Design Life	10

Figures

Figure 1 – Site Location Figure 2 – Boring Locations

Appendices

Appendix A – Boring Logs

Appendix B – Laboratory Testing

Appendix C – Pavement and Core Summary

Appendix D – Traffic Data

Appendix E – Pavement Optimization Design Analysis by Tensar

1. INTRODUCTION

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, we have performed a pavement evaluation for the Elm Street Pavement Reconstruction project between Tucson Boulevard and Country Club Road, in Tucson, Arizona. The purpose of our evaluation was to assess the pavement and subgrade conditions along the project alignment in order to provide geotechnical recommendations for design and construction. This report presents the results of our evaluation, conclusions, and recommendations regarding the proposed construction.

2. SCOPE OF SERVICES

The scope of our services generally included:

- Preparing a field testing plan and associated permit application for submittal to the City of Tucson (COT).
- Conducting a visual reconnaissance of the pavement along the alignment and marking out the boring locations.
- Notifying Arizona811 of our boring locations prior to conducting the field work.
- Arranging for traffic control measures to conduct the field work.
- Coring the existing asphaltic concrete (AC) pavement at three locations along the project alignment.
- Exploring the subsurface soils within the project limits by drilling, logging, and sampling three exploratory soil borings to approximate depths of 3 feet below ground surface (bgs). The boring logs are presented in Appendix A.
- Performing laboratory tests on selected samples collected from our borings to evaluate gradation and Atterberg limits. The results of the laboratory tests are included in Appendix B.
- Preparing this report presenting our findings, conclusions and recommendations regarding the proposed reconstruction.

Our scope of services did not include environmental consulting services such as hazardous waste sampling or analytical testing at the site. A detailed scope of services and estimated fee for such services can be provided upon request.

3. SITE DESCRIPTION

The project site is located in Section 5 of Township 14 South, Range 14 East relative to the Gila and Salt River Base Line and Meridian. The project alignment extends along Elm Street between Tucson Boulevard and Country Club Road in Tucson, Arizona (Figure 1).

At the time of our evaluation residential developments existed along the project alignment. The roadway section consisted of one travel lane in each direction, concrete curb and sidewalks along both sides of the roadway.

4. **PROPOSED CONSTRUCTION**

The COT has identified several segments of the existing street network for reconstruction and/or rehabilitation in fiscal year (FY) 2016 under Bid Package 2. The scope of this report includes Elm Street between Tucson Boulevard and Country Club Road. The project alignment is approximately 0.5-mile long.

We understand that the COT anticipates full-depth reconstruction of the existing roadway along the project alignment. The City proposes a new pavement section consisting of 3.5 inches of AC per of the COT Department of Transportation Standard Specifications Section 406 over 5 inches of aggregate base (AB) per Section 303 of the COT Standard Specifications.

We further understand that the COT intends to use Tucson Department of Transportation (TDOT) AC Mix No. 2 PG 76-22TR+ for the AC layer.

Due to conflicts with shallow utility lines, subgrade improvement by overexcavation will not be performed and the new pavement section will be constructed on subgrade improved with Geogrid (Tensar Geogrid TX5 or equivalent).

The scope of this exploration included evaluation of the existing pavement section and subgrade soils in order to provide recommendations for pavement reconstruction in accordance with the current COT practice. Calculations for the new pavement section supporting the new construction proposed by the COT are presented in Section 9.3 and in Appendix E of this report.

5. EXISTING PAVEMENT CONDITION

On September 30, 2015, Ninyo & Moore conducted a limited visual evaluation of the pavement surface along the project alignment. Based on our field observations, the AC pavement exhibited signs of severe distress in many locations along the project alignment primarily consisting of extensive alligator cracking and potholes. Asphaltic concrete patches were observed at some locations which were probably associated with past maintenance efforts (pothole and crack repairs) or with underground utility work. The crack widths generally varied between hairline (less than 1/8-inch) to one inch.

In our opinion, the distress observed along the project alignment indicates structural failure and is related to a combination of pavement age, subgrade condition, traffic, and environmental impacts.

6. FIELD EXPLORATION AND LABORATORY TESTING

On September 30, 2015, Ninyo & Moore conducted a geotechnical exploration in order to evaluate the subsurface conditions and collect AC cores and soil samples for laboratory testing. Our evaluation consisted of coring the existing AC pavement, drilling, logging, and sampling three small-diameter borings, denoted as B-1 through B-3, utilizing a CME-75 truck-mounted drill rig equipped with hollow-stem augers. The borings extended to depths of approximately 3 feet bgs. The approximate locations of the borings are depicted on Figure 2.

Ninyo & Moore personnel logged the borings in general accordance with the Unified Soil Classification System (USCS) and American Society for Testing and Materials (ASTM) D 2488 by observing cuttings and drive samples. Collected ring samples were trimmed in the field,

inyo & Moo

wrapped in plastic bags, and placed in cylindrical plastic containers to retain in-place moisture conditions.

The soil samples collected from our drilling activities were transported to the Ninyo & Moore laboratory in Tucson, Arizona for geotechnical laboratory testing. The tests included gradation and Atterberg limits. A description of each laboratory test method and the test results are presented in Appendix B.

7. SUBSURFACE CONDITIONS

Our knowledge of the subsurface conditions at the project site is based on our field exploration, laboratory testing, and general experience in the area. More detailed stratigraphic information is presented on the boring logs in Appendix A, attached to this report. The boring logs contain our field and laboratory test results, as well as our interpretation of conditions believed to exist between actual samples retrieved. Therefore, these boring logs contain both factual and interpretive information. Lines delineating subsurface strata on the boring logs are intended to group soils having similar engineering properties and characteristics. They should be considered approximate as the actual transition between soil types (strata) may be gradual. A key to the soil symbols and terms used on the boring logs is provided in Appendix A.

7.1. Asphaltic Concrete

Asphaltic concrete pavement was encountered at the surface of each of our borings. The AC thickness varied between approximately 2 to 3 inches, in our borings. It should be noted that the thickness of the AC pavement between the sampling locations may vary and could be different from that encountered at our sampling locations. Detailed core descriptions are presented in Appendix C.

Aggregate base with an approximate thickness of 3 inches was encountered in our Borings B-2 and B-3 and was not observed in Boring B-1. It is possible the AB material blended with the native subgrade soils, such that delineation of the AB/subgrade interface was not easily interpreted.

7.2. Alluvium

Native alluvial soils were encountered below the pavement section, and extended to the boring termination depths. The alluvium generally consisted of medium dense to very dense, clayey and silty sands with varying amounts of gravel and scattered caliche cementation.

8. CONCLUSIONS

Based on the results of our visual and subsurface evaluations, laboratory testing, and data analysis, geotechnical considerations include the following:

- The on-site soils generally include clayey and silty sands, with a plasticity index (PI) value varying between 11 and 21. Many on-site soils may be sensitive to moisture content fluctuations and may be difficult to compact especially at higher moisture contents. The contractor should be aware of this condition.
- Due to the relatively widely spaced nature of our borings, soil conditions may differ from what was observed during our field exploration.
- The pavement exhibits significant distress in many locations along the project alignment consisting mainly of extensive alligator cracking.
- Full-depth pavement reconstruction is considered for this project as proposed by the COT.

9. **RECOMMENDATIONS**

The following sections present our geotechnical recommendations for the project. If the proposed construction is changed from that discussed in this report, Ninyo & Moore should be contacted for additional recommendations.

9.1. Recommended Pavement Structural Sections

The recommended pavement sections are presented in the table below:

Pavement Section	Service Life (years)	AC (in) ¹	$AB(in)^2$			
COT Preferred Pavement with Geogrid	20	3.5	5			
Alternative Pavement Section without Geogrid	20	4	8			
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.						

9.2. Earthwork

The following sections provide our earthwork recommendations for this project. In general, the earthwork specifications contained in the *City of Tucson/Pima County Standard Specifications for Public Improvements, 2003 Edition (COT/PC Specifications)* are expected to apply unless specifically noted.

9.2.1. Site Preparation

Construction areas should be cleared of deleterious materials, if any are present, including abandoned utilities, construction debris, vegetation, and any other material that might interfere with the performance or progress of the work. These materials should be disposed of at a legal dumpsite. Existing features that call for relocation or removal and extend below finish grade, if present, should be removed, and the resulting excavations backfilled with engineered fill.

9.2.2. Excavations

Our evaluation of the excavation characteristics of the on-site soils is based on the results of our exploratory borings, site observations, and experience with similar materials.

9.2.3. Fill Materials

Soils with PI values of 15 or less (as evaluated by ASTM D 4318) are generally suitable for use as engineered fill. Our Atterberg limits tests indicated PI values ranging between

11 and 21. Based on these test results, some of the on-site soils are not suitable for reuse as engineered fill.

Engineered fill should not include organic material, construction debris, or other nonsoil fill materials. Rock particles and clay lumps should not be larger than 4 inches in dimension. Unsuitable material should be disposed of off-site or in non-structural areas.

9.2.4. Grading and Subgrade Preparation

In general, grading operations should be performed in accordance with Section 205 of the COT/PC Specifications.

Due to potential conflicts with underground utilities, we recommend that the subgrade be improved by the application of Geogrid (Tensar Geogrid TX5 or equivalent). Geogrid should be placed in accordance with the manufacturer's instructions.

Alternatively, if Geogrid is not applied we recommend new pavements be supported on 6 inches of subgrade that is compacted by appropriate mechanical methods to a relative compaction of 95 percent as evaluated by ASTM D 698 at a moisture content generally near optimum. The thickness of the improvement zone should be measured from the bottom of the AB layer.

In areas where excessive moisture is encountered so that the above compaction cannot be achieved and/or the subgrade surface is unstable and yielding (pumping) under the roller wheels, subgrade soils should be scarified to a depth of 12 inches, aerated, and recompacted as specified above. Alternatively, subgrade soils in problem areas should be and replaced with engineered fill to a depth of 12 inches below the bottom of the AB.

9.3. Pavement Design Summary

The following sections present our design assumptions and recommendations for the new flexible pavement section of Elm Street between Tucson Boulevard and Country Club Road, as this roadway is scheduled for full-depth pavement reconstruction.

inyo & Moo

The pavement section was developed using the Active Practices Guidelines issued by the COT Department of Transportation (Guidelines) and the Arizona Department of Transportation (ADOT) Preliminary Engineering and Design Manual (PEDM). We assumed that the subgrade will be improved by the application of Geogrid or overexcavation, as outlined in Section 9.2.4 of this report. The new pavement sections are designed for a 20-year service life.

9.3.1. Traffic

The future traffic numbers used in this report are based on traffic counts provided by Kimley-Horn and Associates, Inc. (KHA), and later communication with the KHA. This information is presented in Appendix D. Based on the above information, and using the procedures outlined in the Guidelines and PEDM, the design number of equivalent single axle loads (ESALs) for the design lane during the 20-year design period was calculated as approximately 1,522,780.

9.3.2. R-Value and Resilient Modulus

The analysis for the design R-value for the pavement section has been performed based on procedures detailed in the Guidelines and the PEDM, using correlated R-values. The correlated R-values were derived from the PI and percent passing No. 200 Sieve test results. A summary of the R-values for this project is presented in Table 1 below:

Location	Sample Depth (ft)	Correlated R-Value
B-1	1.5-3.0	28
B-3	1.5-3.0	59

Table 1 – R-value Summary

In the interest of conservatism, we recommend that an R-value of 25 be used for pavement design for this project.

If the project needs fill from an off-site source, we recommend the soils used for subgrade support should have an R-value of 25 or more. If during construction, the

subgrade is found to vary from the expected soil conditions, we should be contacted so we may re-evaluate our recommended R-values. Based on the above design R-values, the design subgrade resilient modulus (M_R) value of 10,844 pounds per square inch (psi) was calculated in accordance with the Guidelines.

9.3.3. Statistical Parameters

A standard deviation of 0.40 was used for design of the flexible pavement in accordance with the Guidelines. The level of reliability and standard normal deviation (Z_R) values were selected in accordance with the Guidelines for the collector/local functional classification. Their respective values are presented in the table below:

Roadway	adway Functional Classification		Level of Reliability	Standard Normal Deviation
Elm Street	Collector/Local	0.40	90 %	-1.282

 Table 2 – Summary of Statistical Parameters

9.3.4. Serviceability Index

Initial and terminal serviceability indices were selected for the pavement design of the roadways in accordance with the Guidelines. A summary of the serviceability indices for each roadway is provided in the table below:

Table 3 – Summary of Serviceability Parameters

Roadway	Functional Classification	Initial Serviceability Index	Terminal Serviceability Index	Change in Serviceability
Elm Street	Collector/Local	4.5	2.5	2.0

9.3.5. Layer Coefficients

The following structural coefficients were used for the pavement structure in accordance with the Guidelines:

- AC: 0.44.
- AB: 0.14.

A drainage coefficient of 1.25 was used for the AB coefficient as recommended in the Guidelines.

As mentioned in Section 4 above, due to conflicts with existing shallow utilities, it is recommended that the subgrade be improved using Geogrid (Tensar Geogrid TX5 or equivalent). In this case the AB layer coefficient is 0.286.

9.3.6. Asphalt Pavement Section Recommendations

The structural number (SN) was calculated based on the parameters described above. The table below presents the calculated SN value and the recommended structural pavement sections. The AC thickness meets the COT requirements. Supporting documentation of the pavement optimization design using Geogrid is presented in Appendix E:

Roadway	SN	$AC(in)^{1}$	$AB(in)^2$			
COT Preferred Pavement with Geogrid	3.33	3.5	5			
Alternative Pavement without Geogrid	3.08	4	8			
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.						

 Table 4 – Structural Pavement Sections for 20-Year Design Life

The above pavement structural section has been designed with the assumption that the subgrade is prepared by as recommended in Section 9.2.4.

10. SITE DRAINAGE

Surface drainage should be provided to divert water away from paved surfaces. Surface water should also not be permitted to pond on or below pavement areas. Positive drainage for this

project is defined as a slope of 2 percent or more for a distance of 5 feet or more away from the pavements. To deter accumulation of water below the new pavement sections, the bottom of the overexcavated zone below the new pavement should be sloped toward the edges of the roadway.

11. PRE-CONSTRUCTION CONFERENCE

We recommend that a pre-construction conference be held. Representatives of the owner, the civil engineer, Ninyo & Moore, and the contractor should be in attendance to discuss the project plans and schedule. Our office should be notified if the project description included herein is incorrect or if the project characteristics are significantly changed.

12. CONSTRUCTION OBSERVATION AND TESTING

During construction operations, we recommend that Ninyo & Moore perform observation and testing services for the project. These services should be performed to evaluate exposed subgrade conditions, including the extent and depth of overexcavation, to evaluate the suitability of proposed borrow materials for use as engineered fill and to observe placement and test compaction of fill soils. Qualified subcontractors utilizing appropriate techniques and construction materials should perform construction of the proposed improvements.

13. LIMITATIONS

The field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation will be performed upon request. Please also note that our evaluation was limited to assessment of the geotechnical

aspects of the project, and did not include evaluation of structural issues, environmental concerns, or the presence of hazardous materials.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document.

This report is intended for design purposes only. It does not provide sufficient data to prepare an accurate bid by contractors. It is suggested that the bidders and their geotechnical consultant perform an independent evaluation of the subsurface conditions in the project areas. The independent evaluations may include, but not be limited to, review of other geotechnical reports prepared for the adjacent areas, site reconnaissance, and additional exploration and laboratory testing.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are encountered, our office should be notified and additional recommendations, if warranted, will be provided upon request. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

inyo « Moo

14. **REFERENCES**

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards.

- Arizona Department of Transportation (ADOT), 1989, Preliminary Engineering and Design Manual, Materials Section, 3rd Edition: dated March.
- City of Tucson, Arizona, Department of Transportation, Engineering Division, 1987, Active Practices Guidelines: dated June 1.

Ninyo & Moore, In-house proprietary information.

file no: 4817vmap1015e

DATE:

12/15

PROJECT NO:

604817002

Note: Dimensions	directions,	and locations	are approximate.

2
L

TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ELM STREET TUCSON, ARIZONA

APPENDIX A

BORING LOGS

Field Procedure for the Collection of Relatively Undisturbed Samples

Relatively undisturbed soil samples were obtained in the field using the following methods.

The Modified Split-Barrel Drive Sampler

The sampler, with an external diameter of 3.0 inches, was lined with 1-inch long, thin brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a hammer or the Kelly bar of the drill rig in general accordance with ASTM D 3550. The driving weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer or bar, and the number of blows per foot of driving are presented on the boring logs as an index to the relative resistance of the materials sampled. The samples were removed from the sample barrel in the brass rings, sealed, and transported to the laboratory for testing.

SOIL CLASSIFICATION CHART PER ASTM D 2488							GRAI	N SIZE			
DD				SECON	DARY DIVISIONS		DESCRIPTION		SIEVE	GRAIN	APPROXIMATE
		510113	GR	OUP SYMBOL	GROUP NAME				SIZE	SIZE	SIZE
		CLEAN GRAVEL less than 5% fines		GW	well-graded GRAVEL		Boulders		> 12"	> 12"	Larger than
				GP	poorly graded GRAVEL		Cobbles				Dasketball-sized
	GRAVEI			GW-GM	well-graded GRAVEL with silt			bbles	3 - 12"	3 - 12"	Fist-sized to basketball-sized
	more than	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt						
	coarse	CLASSIFICATIONS 5% to 12% fines		GW-GC	well-graded GRAVEL with clay			Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized
	retained on			GP-GC	poorly graded GRAVEL with clay		Gravel				Pag sized to
	INO. 4 SIEVE	GRAVEL with		GM	silty GRAVEL			Fine	#4 - 3/4"	0.19 - 0.75"	thumb-sized
COARSE- GRAINED		FINES more than		GC	clayey GRAVEL			0	#10 #1	0.070 0.40"	Rock-salt-sized to
SOILS		12% fines		GC-GM	silty, clayey GRAVEL			Coarse	#10 - #4	0.079 - 0.19"	pea-sized
50% retained	SAND 50% or more of coarse fraction passes No. 4 sieve	CLEAN SAND less than 5% fines		SW	well-graded SAND		Sand Medium Fine Fines	Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to
on No. 200 sieve				SP	poorly graded SAND						rock-salt-sized
		ND SAND with por more DUAL CLASSIFICATIONS 5% to 12% fines sees		SW-SM	well-graded SAND with silt			Fine	#200 - #40	0.0029 -	Flour-sized to
			s ///	SP-SM	poorly graded SAND with silt					0.017	30gai-3i2eu
				SW-SC	well-graded SAND with clay			Passing #200	< 0.0029"	Flour-sized and smaller	
				SP-SC	poorly graded SAND with clay		PLASTICITY CHART				
		SAND with FINES more than 12% fines		SM	silty SAND					•	
				SC	clayey SAND						
				SC-SM	silty, clayey SAND		7				
				CL	lean CLAY		° 6				
	SILT and	INORGANIC		ML	SILT		(Id) 5				
	CLAY liquid limit			CL-ML	silty CLAY			D		CH or OF	
FINE-	less than 50%	OBCANIC		OL (PI > 4)	organic CLAY						
SOILS		ORGANIC		OL (PI < 4)	organic SILT			D	CL or (WH or OH
50% or				СН	fat CLAY		I SV 1				
No. 200 sieve	SILT and CLAY	INORGANIC		MH	elastic SILT			CL -	ML ML or	OL	
	liquid limit 50% or more	OPCANIC		OH (plots on or above "A"-line)	organic CLAY			0 10	20 30 40	50 60 70	80 90 100
		URGANIC		OH (plots below "A"-line)	organic SILT				LIQUID	LIMIT (LL), %	5
	Highly C	Organic Soils		PT	Peat						

APPARENT DENSITY - COARSE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER		
DENSITY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	
Very Loose	≤4	≤ 8	<u>≤</u> 3	≤ 5	
Loose	5 - 10	9 - 21	4 - 7	6 - 14	
Medium Dense	11 - 30	22 - 63	8 - 20	15 - 42	
Dense	31 - 50	64 - 105	21 - 33	43 - 70	
Very Dense	> 50	> 105	> 33	> 70	

Ninyo & Moore

CONSISTENCY - FINE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER		
CONSIS- TENCY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	
Very Soft	< 2	< 3	< 1	< 2	
Soft	2 - 4	3 - 5	1 - 3	2 - 3	
Firm	5 - 8	6 - 10	4 - 5	4 - 6	
Stiff	9 - 15	11 - 20	6 - 10	7 - 13	
Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26	
Hard	> 30	> 39	> 20	> 26	

USCS METHOD OF SOIL CLASSIFICATION

Explanation of USCS Method of Soil Classification DATE

DEPTH (feet)	Bulk SAMPLES	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BOR	BORING LOG EXPLANATION SHEET						
0							Bulk sample.							
							Modified split-barrel	drive sampler. lified split-barrel dri	ve samnler					
									ve sampler.					
							Sample retained by ot	hers.						
							Standard Penetration	Test (SPT).						
5 -	\Box						No recovery with a SI	PT.						
		XX/XX					Shelby tube sample. I	Distance pushed in in	nches/length of sample	recovered in inches.				
							No recovery with She	lby tube sampler.						
							Continuous Push Sam	ple.						
			Ş				Seepage.							
10-			ļi. ₩ļi				Groundwater encount Groundwater measure	ered during drilling.						
						-								
						SM	MAJOR MATERIAL Solid line denotes uni	<u>TYPE (SOIL)</u> : t change.						
						CL	Dashed line denotes n	naterial change.						
							Attitudes: Strike/Dip							
							c: Contact							
15 -							J: Joint f: Fracture							
							F: Fault							
							s: Shear							
	$\left \right $						bss: Basal Slide Surfa	ce						
							sz: Shear Zone							
							sbs: Shear Bedding Su	ırface						
							The total depth line is	a solid line that is d	rawn at the bottom of	the boring.				
20							<u> </u>		BORINGLOG	<u> </u>				
			\overline{n}		&	AAn	nre		Explanation of Boring Log Sy	mbols				
			Э					PROJECT NO.	DATE	FIGURE				

000000000000000000000000000000000000	APLES			CF)		7	DATE DRILLED 9/30/15 BORING NO. B-1										
1 1	eet) SAN	OOT	≡ (%)	Y (PC	2	ATIO	GROUND ELEVATION 2,440' ± (MSL) SHEET 1 OF 1										
Image: State State Image: State State Image: State State Image: State State State Image: State	I) HT	WS/F	TUR	INSIT	YMBO	S.C.S	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)										
0 8 SAMPLED BY	DEF Bulk Driven	BLO	MOIS	۲ DE	Ś	U UU	DRIVE WEIGHT 140 lbs. (Automatic) DROP 30"										
0 ASPHALT CONCRETE: Approximately 3 inches thick. 11UTUIN: Brown, dry, medium dense, clayey SAND; few gravel; numerous caliche nodules. 21 7 out Depth - 3 feet. 6 Groundwater not encountered during drilling. 8 Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling. 9 Note: Groundwater not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. 10 The ground elevation shown above is an estimation only. It is hased on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 10 11 Image: Complexity accurate for preparing construction bids and design documents. 10 Image: Complexity accurate for preparing construction bids and design documents. 11 Image: Complexity accurate for preparing construction bids and design documents. 12 Image: Complexity accurate for preparing construction bids and design documents. 13 Image: Complexity accurate for preparing construction bids and design documents. 14 Image: Complexity accurate for preparing construction bids and design documents. 15 Image: Complexity accurate for preparing constructio				L L			SAMPLED BY LOGGED BY REVIEWED BY										
SC ALLUVIUM: Brown, dry, medium dense, clayey SAND; few gravel; numerous caliche nodules. 3 Total Depth = 3 feet. Groundwater not encountered during drilling. Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling. Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. 10 The ground elevation shown above is an estimation only. It is based on our interpretations of published mage and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 Image: State of the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 Image: State of the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 Image: State of the purpose of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 11 Image: State of the purpose of this evaluation. It is not sufficiently accurate for preparing construction bids and the sign of the purpose of this evaluation. It is not sufficiently accurate for preparing construction bids and the sign of the purpose of this evaluation. It is not sufficiently accurate for preparing construction bids and the sign of the purpose of the purp	0						ASPHALT CONCRETE: Approximately 3 inches thick.										
Croundwater not encountered during drilling. Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling. Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. Integround elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. Is the report of the purposes of the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. Is the report of the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. Is the report of the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. Is the report of the purpose		21				50	ALLUVIUM: Brown, dry, medium dense, clayey SAND; few gravel; numerous caliche nodules. Total Depth = 3 feet.										
3 Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling. 3 Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling. Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 10 10 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 10 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10 175 10 18 10 19 10							Groundwater not encountered during drilling.										
5 Image: Second Address Second Addr							Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling.										
The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.	5						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.										
							The ground elevation shown above is an estimation only. It is based on our interpretation of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.										
10 10 15 15 20 BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ELM STREET																	
15 15 20 BORING LOG TUCSON FAVEMENT RECONSTRUCTION PROGRAM - ELM STREET TUCSON, ARIZONA PROJECT NO. DATE FIGURE FIGURE FIGURE	10																
15 15 20 Ningo & Moore Ningo & Moore PROJECT NO. DATE FIGURE MALENT NET TUCSON ARIZONA																	
15 15 20 20 20 20 20 20 20 20 20 20																	
20 20 20 20 20 20 20 20 20 20																	
20 BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ELM STREET TUCSON, ARIZONA PROJECT NO. DATE FIGURE 604817002 12/15 A.1																	
15 10 10 10 10 10 10 10 10 10 10																	
20 BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ELM STREET TUCSON, ARIZONA PROJECT NO. OATE FIGURE 604817002 12/15 A.1																	
20 BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ELM STREET TUCSON, ARIZONA PROJECT NO. DATE FIGURE 604817002 12/15 A.1																	
20 20 20 20 20 20 20 20 20 20																	
20 20 20 20 20 20 20 20 20 20																	
20 20 20 20 20 20 20 20 20 20																	
20 BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ELM STREET TUCSON, ARIZONA PROJECT NO. DATE FIGURE 604817002 12/15 A-1																	
20 BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ELM STREET TUCSON, ARIZONA PROJECT NO. DATE FIGURE 604817002 12/15 A-1																	
Boring Log Tucson Pavement Reconstruction PROGRAM - ELM STREET Tucson, ARIZONA PROJECT NO. DATE FIGURE 604817002 12/15 A-1	20																
PROJECT NO. DATE FIGURE 604817002 12/15 A-1					Sz J		BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ELM STREET TUCSON, ARIZONA										
			7	_			PROJECT NO. DATE FIGURE 604817002 12/15 A 1										

	IPLES			F)			DATE DRILLED 9/30/15 BORING NO. B-2
eet)	SAM	DOT	(%)	(PC		LION .	GROUND ELEVATION2,447' ± (MSL) SHEET OF
TH (fe		NS/FC	TURE	NSITY	MBO	S.C.S	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)
DEP	riven	BLO	MOIS	ζΥ DE	Ś	.U U.	DRIVE WEIGHT 140 lbs. (Automatic) DROP 30"
				DR		0	SAMPLED BY LOGGED BY REVIEWED BY
0	+						ASPHALT CONCRETE: Approximately 2 inches thick.
						SW-SM	AGGREGATE BASE: Approximately 3 inches thick.
_		50/4"					<u>ALLO VIOM</u> : Light brown, dry, very dense, well-graded SAND with silt; with gravel; numerous caliche nodules, moderate cementation.
							Total Domth 2 foot
							Groundwater not encountered during drilling.
							Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling.
5							Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.
							The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
10-							
	$\left \right $						
15	+						
	+						
20		4)		<u> </u>		BORING LOG
		VĬ	<u>n</u>		Sz		TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ELM STREET TUCSON, ARIZONA
	-	V	J		_		PROJECT NO. DATE FIGURE 604817002 12/15 A-2

	PLES						DATE DRILLED 9/30/15 BORING NO. B-3									
et)	SAMF	oT	(%)	(PCF	.	NOI	GROUND ELEVATION 2,455' ± (MSL) SHEET 1 OF 1									
H (fe		'S/FO	URE	ISITY	MBOL	FICA.	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)									
DEP1	ulk iven	BLOW	IOIST		SY	ASS U.S	DRIVE WEIGHT 140 lbs. (Automatic) DROP 30"									
	۳Ľ	ш	2	DR		Ū	SAMPLED BY DM LOGGED BY DM REVIEWED BY									
0							DESCRIPTION/INTERPRETATION									
						SW-SM	AGGREGATE BASE: Approximately 3 inches thick.									
		70					ALLUVIUM: Light brown, dry, dense, well-graded SAND with silt; with gravel, numerous caliche nodules.									
							Total Depth = 3 feet. Groundwater not encountered during drilling.									
							Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling.									
5 -							Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.									
							The ground elevation shown above is an estimation only. It is based on our interpretation of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.									
· ·																
10 -																
	$\left \right $															
15 -																
20																
			n		e i		TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ELM STREET									
			79		~		PROJECT NO. DATE FIGURE									
		,				T	604817002 12/15 A-3									

APPENDIX B

LABORATORY TESTING

Classification

Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings in Appendix A.

Gradation Analysis

One gradation analysis test was performed on a selected representative soil sample in general accordance with ASTM D 422. The grain-size distribution curves are shown in Figures B-1 and B-2. These test results were utilized in evaluating the soil classification in accordance with the USCS.

Atterberg Limits

Tests were performed on a selected representative fine-grained soil sample to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. These test results were utilized to evaluate the soil classification in accordance with the USCS. The test results and classifications are shown on Figure B-3.

	1	1	1	1	1		1
SYMBOL	LOCATION	DEPTH (FT)	LIQUID LIMIT, LL	PLASTIC LIMIT, PL	PLASTICITY INDEX, PI	USCS CLASSIFICATION (Fraction Finer Than No. 40 Sieve)	USCS (Entire Sample)
•	B-1	1.5-3.0	43	22	21	CL	SC
	B-3	1.5-3.0	44	33	11	ML	SW-SM
PLASTICITY INDEX, PL	ES NON-PLAST		CL or OL ML or C 30 40 LIQ	CH CH DL 50 6 UID LIMIT, L RDANCE WIT	H OT OH MH 0 70 L H ASTM D 4318		
Niny		re	AT	TERBE	RG LIMIT	S TEST RESUL	TS FIGURE
PROJECT NO.		ATE	тис	SON PAVEMEN	IT RECONSTRUC	TION PROGRAM - ELM STRE	
604817002	12	/15	1		TUCSON, AF	RIZONA	B-3

APPENDIX C

PAVEMENT AND CORE SUMMARY

TUCSON PAVEMENT REHABILITATION PROGRAM - FY 16

No.	Location	Approximate AC thickness (in)*	Recovered AC Thickness (in)	Core Description	Pavement Condition
B-1	Eastbound, 290 feet east of Tucson Boulevard	3	3	Two lifts, 1" and 2", few voids, crack thoughout core.	Extensive alligator and irregular cracking, potholes, patches.
B-2	Westbound, 120 feet west of Treat Avenue	2	2	Two lifts, 1" and 1", bottom lift decomposed, numerous voids.	Extensive alligator and irregular cracking, potholes, patches.
В-3	Eastbound, 310 feet west of Country Club Road	2.5	2.5	Two lifts, 1" and 1.5", numerous voids.	Extensive alligator and irregular cracking, potholes, patches.

ELM STREET - PAVEMENT AND CORE SUMMARY

Notes:

* Measured in the boring

APPENDIX D

TRAFFIC DATA

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-007 Station ID: Wed 10/07/2015 Elm St. btwn. Bentley Ave. & Country Club Rd. 32.243187 -110.927567 Latitude: 0' 0.000 Undefined

Eastbound												Ld		Ondenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	0	2	2	0	2	0	0	0	0	0	0	0	0	6
01:00	0	4	1	0	0	0	0	0	0	0	0	0	0	5
02:00	0	1	2	0	0	0	0	0	0	0	0	0	0	3
03:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00	0	2	1	0	0	0	0	1	0	0	0	0	0	4
05:00	0	7	2	0	3	0	0	0	0	0	0	0	0	12
06:00	1	20	10	2	2	0	0	0	0	0	0	0	0	35
07:00	0	47	33	3	4	0	0	0	0	0	0	0	0	87
08:00	0	85	35	1	6	2	2	1	0	0	0	0	0	132
09:00	1	61	22	2	1	0	0	0	0	0	0	0	0	87
10:00	1	49	21	2	4	1	0	1	0	0	0	0	0	79
11:00	0	60	23	3	2	0	0	0	0	0	0	0	0	88
12 PM	0	70	29	2	5	0	0	0	0	0	0	0	0	106
13:00	1	93	55	4	6	0	0	0	0	0	0	0	0	159
14:00	1	77	41	2	4	2	0	0	0	0	0	0	0	127
15:00	1	124	43	2	10	2	0	0	0	0	0	0	0	182
16:00	2	143	49	2	5	1	1	0	0	1	0	0	0	204
17:00	7	161	53	1	9	3	1	0	0	0	0	0	0	235
18:00	1	77	23	2	8	0	0	0	0	0	0	0	0	111
19:00	0	39	20	1	3	0	0	0	0	0	0	0	0	63
20:00	0	37	16	0	6	0	0	0	0	0	0	0	0	59
21:00	1	26	8	0	2	0	0	0	0	0	0	0	0	37
22:00	0	18	1	0	0	0	0	0	0	0	0	0	0	19
23:00	0	9	2	0	0	0	0	0	0	0	0	0	0	11
Day	17	1212	492	29	82	11	4	3	0	1	0	0	0	1851
Total														1001
Percent	0.9%	65.5%	26.6%	1.6%	4.4%	0.6%	0.2%	0.2%	0.0%	0.1%	0.0%	0.0%	0.0%	
AM Peak	06:00	08:00	08:00	07:00	08:00	08:00	08:00	04:00						08:00
Vol.	1	85	35	3	6	2	2	1		10.00				132
PM Peak	17:00	17:00	13:00	13:00	15:00	17:00	16:00			16:00				17:00
Vol.	7	161	55	4	10	3	1			1				235
Grand														
Total	17	1212	492	29	82	11	4	3	0	1	0	0	0	1851
Percent	0.9%	65.5%	26.6%	1.6%	4.4%	0.6%	0.2%	0.2%	0.0%	0.1%	0.0%	0.0%	0.0%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-007 Station ID: Wed 10/07/2015 Elm St. btwn. Bentley Ave. & Country Club Rd. 32.243187 -110.927567 Latitude: 0' 0.000 Undefined

Westbound												La		Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	0	8	Ō	0	0	0	0	0	0	0	0	0	0	8
01:00	0	2	1	0	0	0	0	0	0	0	0	0	0	3
02:00	0	0	2	0	0	0	0	0	0	0	0	0	0	2
03:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00	0	5	0	0	1	0	0	0	0	0	0	0	0	6
05:00	0	13	7	0	1	0	0	0	0	0	0	0	0	21
06:00	0	57	9	2	4	0	0	0	0	0	0	0	0	72
07:00	1	149	28	6	14	0	0	0	0	0	0	0	0	198
08:00	1	181	40	2	16	0	1	0	0	0	0	0	0	241
09:00	1	100	16	2	14	0	0	0	0	0	0	0	0	133
10:00	0	81	23	2	12	0	0	0	0	0	0	0	0	118
11:00	0	108	13	3	6	0	0	0	0	0	0	0	0	130
12 PM	0	95	21	2	16	0	0	0	0	0	0	0	0	134
13:00	2	107	26	2	14	0	0	1	0	0	0	0	0	152
14:00	0	83	20	1	10	0	0	0	0	0	0	0	0	114
15:00	1	105	27	2	10	0	0	0	0	0	0	0	0	145
16:00	2	160	37	2	14	0	0	1	0	0	0	0	0	216
17:00	1	158	17	1	10	0	0	0	0	0	0	0	0	187
18:00	0	96	15	1	11	0	0	0	0	0	0	0	0	123
19:00	0	56	8	0	3	0	0	0	0	0	0	0	0	67
20:00	0	47	6	0	2	0	0	0	0	0	0	0	0	55
21:00	0	35	6	0	2	0	0	0	0	0	0	0	0	43
22:00	1	15	3	0	1	0	0	0	0	0	0	0	0	20
23:00	0	7	1	0	0	0	0	0	0	0	0	0	0	8
Day	10	1668	326	28	161	0	1	2	0	0	0	0	0	2196
Percent	0.5%	76.0%	14 8%	1.3%	7.3%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	
AM Peak	07:00	08:00	08:00	07:00	08:00	0.070	08:00	01170	01070	0.070	0.070	0.070	0.070	08:00
Vol.	1	181	40	6	16		1							241
PM Peak	13:00	16:00	16:00	12:00	12:00			13:00						16:00
Vol.	2	160	37	2	16			1						216
Grand Total	10	1668	326	28	161	0	1	2	0	0	0	0	0	2196
Percent	0.5%	76.0%	14.8%	1.3%	7.3%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-007 Station ID: Wed 10/07/2015 Elm St. btwn. Bentley Ave. & Country Club Rd. 32.243187 -110.927567 Latitude: 0' 0.000 Undefined

Eastbound,	Westboun	d										La		Undenne
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	TIrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	0	10	2	0	2	0	0	0	0	0	0	0	0	14
01:00	0	6	2	0	0	0	0	0	0	0	0	0	0	8
02:00	0	1	4	0	0	0	0	0	0	0	0	0	0	5
03:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00	0	7	1	0	1	0	0	1	0	0	0	0	0	10
05:00	0	20	9	0	4	0	0	0	0	0	0	0	0	33
06:00	1	77	19	4	6	0	0	0	0	0	0	0	0	107
07:00	1	196	61	9	18	0	0	0	0	0	0	0	0	285
08:00	1	266	75	3	22	2	3	1	0	0	0	0	0	373
09:00	2	161	38	4	15	0	0	0	0	0	0	0	0	220
10:00	1	130	44	4	16	1	0	1	0	0	0	0	0	197
11:00	0	168	36	6	8	0	0	0	0	0	0	0	0	218
12 PM	0	165	50	4	21	0	0	0	0	0	0	0	0	240
13:00	3	200	81	6	20	0	0	1	0	0	0	0	0	311
14:00	1	160	61	3	14	2	0	0	0	0	0	0	0	241
15:00	2	229	70	4	20	2	0	0	0	0	0	0	0	327
16:00	4	303	86	4	19	1	1	1	0	1	0	0	0	420
17:00	8	319	70	2	19	3	1	0	0	0	0	0	0	422
18:00	1	173	38	3	19	0	0	0	0	0	0	0	0	234
19:00	0	95	28	1	6	0	0	0	0	0	0	0	0	130
20:00	0	84	22	0	8	0	0	0	0	0	0	0	0	114
21:00	1	61	14	0	4	0	0	0	0	0	0	0	0	80
22:00	1	33	4	0	1	0	0	0	0	0	0	0	0	39
23:00	0	16	3	0	0	0	0	0	0	0	0	0	0	19
Day	27	2880	818	57	2/13	11	5	5	0	1	0	0	0	4047
Total	21	2000	010	57	245		5	5	0		0	0	0	-0-1
Percent	0.7%	71.2%	20.2%	1.4%	6.0%	0.3%	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	
AM Peak	09:00	08:00	08:00	07:00	08:00	08:00	08:00	04:00						08:00
Vol.	2	266	75	9	22	2	3	1						373
PM Peak	17:00	17:00	16:00	13:00	12:00	17:00	16:00	13:00		16:00				17:00
Vol.	8	319	86	6	21	3	1	1		1				422
Grand	27	2880	819	57	242	11	5	F	0	1	0	0	0	4047
Total	21	2000	010	57	243	11	5	5	0	I	0	0	0	4047
Percent	0.7%	71.2%	20.2%	1.4%	6.0%	0.3%	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	

APPENDIX E

PAVEMENT OPTIMIZATION DESIGN ANALYSIS BY TENSAR

SpectraPave4 PRO[™] Pavement Optimization Design Analysis

Design Parameters for AASHTO (1993) Equation

Reliability (%)	= 90	Initial Serviceability	= 4.5
Standard Normal Deviate	= -1.282	Terminal Serviceability	= 2.5
Standard Deviation	= 0.45	Change in Serviceability	= 2

Aggregate fill shall conform to following requirement:

D50 <= 27mm (Base course)

Unstabilized Section Material Properties

Tensar

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
ABC	Aggregate Base Course	20	0.140	1.25

Stabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
MSL	Mechanically Stabilized Base Cour	20	0.286	1.25

This document was prepared using SpectraPave4 PRO™ Software Version 4.6.1 Developed by Tensar International Corporation Copyright 1998 - 2014, All Rights Reserved.

Stabilized Pavement

Tensar Schlessinger 12/15/15 Designer Date

PAVEMENT EVALUATION TUCSON PAVEMENT RECONSTRUCTION PROGRAM ESCALANTE ROAD BETWEEN PANTANO ROAD AND APACHE WELL DRIVE TUCSON, ARIZONA

PREPARED FOR:

Kimley-Horn & Associates, Inc. 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

PREPARED BY:

Ninyo & Moore Geotechnical and Environmental Sciences Consultants 1991 East Ajo Way, Suite 145 Tucson, Arizona 85713

> December 14, 2015 Project No. 604817002

1991 East Ajo Way, Suite 145 • Tucson, Arizona 85713 • Phone (520) 577-7600 • Fax (520) 577-7606

December 14, 2015 Project No. 604817002

Mr. Rick Solis, P.E. Kimley-Horn 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

Subject: Pavement Evaluation Tucson Pavement Reconstruction Program – Escalante Road Between Pantano Road and Apache Well Drive Tucson, Arizona

Dear Mr. Solis:

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, Ninyo & Moore has performed a pavement evaluation for the above-referenced site. The attached report presents our methodology, findings, conclusions, and recommendations regarding the geotechnical conditions at the project site.

We appreciate the opportunity to be of service to you during this phase of the project.

Sincerely, **NINYO & MOORE** Marek J. Kasztalski, PE, PMP, LEED Al

Marek J. Kasztalski, PE, PMP, LEED AP Senior Geotechnical Engineer Fred Narcaroti Principal/Tucson Office Manager

MJK/DT/FFN/tlp

Distribution: (1) Addressee (Electronic Copy)

TABLE OF CONTENTS

	Page						
1.	INTRODUCTION						
2.	SCOPE OF SERVICES						
3.	SITE DESCRIPTION						
4.	PROPOSED CONSTRUCTION						
5.	EXISTING PAVEMENT CONDITION						
6.	FIELD EXPLORATION AND LABORATORY TESTING						
7.	SUBSURFACE CONDITIONS						
	7.2. Alluvium						
8.	CONCLUSIONS						
9.	RECOMMENDATIONS59.1. Recommended Pavement Structural Sections59.2. Earthwork69.2.1. Site Preparation69.2.2. Excavations69.2.3. Fill Materials79.2.4. Grading and Subgrade Preparation79.3. Pavement Design Summary89.3.1. Traffic89.3.2. R-Value and Resilient Modulus89.3.3. Statistical Parameters99.3.4. Serviceability Index109.3.5. Layer Coefficients109.3.6. Asphalt Pavement Section Recommendations10						
10.	SITE DRAINAGE						
11.	PRE-CONSTRUCTION CONFERENCE						
12.	CONSTRUCTION OBSERVATION AND TESTING12						
13.	LIMITATIONS12						
14.	REFERENCES						

TABLES

Table 1 – R-value Summary	9
Table 2 – Summary of Statistical Parameters	9
Table 3 – Summary of Serviceability Parameters	10
Table 4 – Structural Pavement Sections for 20-Year Design Life	11

Figures

Figure 1 – Site Location Figure 2 – Boring Locations

Appendices

Appendix A – Boring Logs

Appendix B – Laboratory Testing

Appendix C – Pavement and Core Summary

Appendix D – Traffic Data

Appendix E – Pavement Optimization Design Analysis by Tensar

1. INTRODUCTION

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, we have performed a pavement evaluation for the Escalante Road Pavement Reconstruction project between Pantano Road and Apache Well Drive, in Tucson, Arizona. The purpose of our evaluation was to assess the pavement and subgrade conditions along the project alignment in order to provide geotechnical recommendations for design and construction. This report presents the results of our evaluation, conclusions, and recommendations regarding the proposed construction.

2. SCOPE OF SERVICES

The scope of our services generally included:

- Preparing a field testing plan and associated permit application for submittal to the City of Tucson (COT).
- Conducting a visual reconnaissance of the pavement along the alignment and marking out the boring locations.
- Notifying Arizona811 of our boring locations prior to conducting the field work.
- Arranging for traffic control measures to conduct the field work.
- Coring the existing asphaltic concrete (AC) pavement at six locations along the project alignment.
- Exploring the subsurface soils within the project limits by drilling, logging, and sampling six exploratory soil borings to approximate depths of 3 feet below ground surface (bgs). The boring logs are presented in Appendix A.
- Performing laboratory tests on selected samples collected from our borings to evaluate gradation and Atterberg limits. The results of the laboratory tests are included in Appendix B.
- Preparing this report presenting our findings, conclusions and recommendations regarding the proposed reconstruction.

Our scope of services did not include environmental consulting services such as hazardous waste sampling or analytical testing at the site. A detailed scope of services and estimated fee for such services can be provided upon request.

3. SITE DESCRIPTION

The project site is located in Sections 28 and 34 of Township 14 South, Range 15 East relative to the Gila and Salt River Base Line and Meridian. The project alignment extends along Escalante Road between Pantano Road and Apache Well Drive in Tucson, Arizona (Figure 1).

At the time of our evaluation residential developments existed along the project alignment. South of Escalante Road, the project alignment was adjacent to the Davis Monthan Air Force Base. The roadway section consisted of one travel lane in each direction, a wide median, concrete curb and sidewalks along portions of the north side of the roadway. No gutter was observed along the project alignment.

4. PROPOSED CONSTRUCTION

The COT has identified several segments of the existing street network for reconstruction and/or rehabilitation in fiscal year (FY) 2016 under Bid Package 2. The scope of this report includes Escalante Road between a point located approximately 157 feet east of Pantano Road and a point located approximately 726 feet east of Apache Well Drive (Wingate Boulevard). The project alignment is approximately 1.4 miles long.

We understand that the COT anticipates full-depth reconstruction of the existing roadway along the project alignment. The City proposes a new pavement section consisting of 5 inches of AC per of the COT Department of Transportation Standard Specifications Section 406 over 5 inches of aggregate base (AB) per Section 303 of the COT Standard Specifications.

We further understand that the COT intends to use Tucson Department of Transportation (TDOT) AC Mix No. 2 PG 76-22TR+ for the surface layer and TDOT AC Mix No. 1 PG 70-10 for the underlying layer. Both layers are proposed to be 2.5 inches thick.

Due to conflicts with shallow utility lines, subgrade improvement by overexcavation will not be performed and the new pavement section will be constructed on subgrade improved with Geogrid (Tensar Geogrid TX5 or equivalent).

The scope of this exploration included evaluation of the existing pavement section and subgrade soils in order to provide recommendations for pavement reconstruction in accordance with the current COT practice. Calculations for the new pavement section supporting the new construction proposed by the COT are presented in Section 9.3 and in Appendix E of this report.

5. EXISTING PAVEMENT CONDITION

On September 28, 2015, Ninyo & Moore conducted a limited visual evaluation of the pavement surface along the project alignment. Based on our field observations, the AC pavement exhibited signs of severe distress in many locations along the project alignment primarily consisting of extensive raveling of the pavement surface, longitudinal, transverse and irregular cracking, and potholes. Asphaltic concrete patches were observed at some locations which were probably associated with past maintenance efforts (pothole and crack repairs) or with underground utility work. The crack widths generally varied between hairline (less than 1/8-inch) and over one inch.

In our opinion, the distress observed along the project alignment indicates structural failure and is related to a combination of pavement age, traffic, and environmental impacts.

6. FIELD EXPLORATION AND LABORATORY TESTING

On September 28, 2015, Ninyo & Moore conducted a geotechnical exploration in order to evaluate the subsurface conditions and collect AC cores and soil samples for laboratory testing. Our evaluation consisted of coring the existing AC pavement, drilling, logging, and sampling six small-diameter borings, denoted as B-1 through B-6, utilizing a CME-45 truck-mounted drill rig equipped with hollow-stem augers. The borings extended to depths of approximately 3 feet bgs. The approximate locations of the borings are depicted on Figure 2.

Ninyo & Moore personnel logged the borings in general accordance with the Unified Soil Classification System (USCS) and American Society for Testing and Materials (ASTM) D 2488 by observing cuttings and drive samples. Collected ring samples were trimmed in the field, wrapped in plastic bags, and placed in cylindrical plastic containers to retain in-place moisture conditions.

The soil samples collected from our drilling activities were transported to the Ninyo & Moore laboratory in Tucson, Arizona for geotechnical laboratory testing. The tests included gradation and Atterberg limits. A description of each laboratory test method and the test results are presented in Appendix B.

7. SUBSURFACE CONDITIONS

Our knowledge of the subsurface conditions at the project site is based on our field exploration, laboratory testing, and general experience in the area. More detailed stratigraphic information is presented on the boring logs in Appendix A, attached to this report. The boring logs contain our field and laboratory test results, as well as our interpretation of conditions believed to exist between actual samples retrieved. Therefore, these boring logs contain both factual and interpretive information. Lines delineating subsurface strata on the boring logs are intended to group soils having similar engineering properties and characteristics. They should be considered approximate as the actual transition between soil types (strata) may be gradual. A key to the soil symbols and terms used on the boring logs is provided in Appendix A.

7.1. Asphaltic Concrete

Asphaltic concrete pavement was encountered at the surface of each of our borings. The AC thickness varied between approximately 2 ¹/₂ and 5 inches, in our borings. It should be noted that the thickness of the AC pavement between the sampling locations may vary and could be different from that encountered at our sampling locations. Detailed core descriptions are presented in Appendix C.

Aggregate base was not observed in our borings. It is possible the AB material blended with the native subgrade soils, such that delineation of the AB/subgrade interface was not easily interpreted.

7.2. Alluvium

Native alluvial soils were encountered below the pavement section, and extended to the boring termination depths. The alluvium generally consisted of loose to dense, silty and clayey sands with varying amounts of gravel.

8. CONCLUSIONS

Based on the results of our visual and subsurface evaluations, laboratory testing, and data analysis, geotechnical considerations include the following:

- The on-site soils generally include clayey sands, with a plasticity index (PI) varying between 0 (non-plastic) and 21. These soils may be sensitive to moisture content fluctuations and may be difficult to compact especially at higher moisture contents. The contractor should be aware of this condition.
- Due to the relatively widely spaced nature of our borings, soil conditions may differ from what was observed during our field exploration.
- The pavement exhibits significant distress in many locations along the project alignment consisting mainly of transverse, block and irregular cracking.
- Full-depth pavement reconstruction is considered for this project as proposed by the COT.

9. **RECOMMENDATIONS**

The following sections present our geotechnical recommendations for the project. If the proposed construction is changed from that discussed in this report, Ninyo & Moore should be contacted for additional recommendations.

9.1. Recommended Pavement Structural Sections

The recommended pavement sections are presented in the table below:

Pavement Section	Service Life (years)	AC (in) ¹	$AB (in)^2$			
COT Preferred Pavement with Geogrid	20	5	5			
Alternative Pavement Section without Geogrid	20	5.5	5			
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.						

9.2. Earthwork

The following sections provide our earthwork recommendations for this project. In general, the earthwork specifications contained in the *City of Tucson/Pima County Standard Specifications for Public Improvements, 2003 Edition (COT/PC Specifications)* are expected to apply unless specifically noted.

9.2.1. Site Preparation

Construction areas should be cleared of deleterious materials, if any are present, including abandoned utilities, construction debris, vegetation, and any other material that might interfere with the performance or progress of the work. These materials should be disposed of at a legal dumpsite. Existing features that call for relocation or removal and extend below finish grade, if present, should be removed, and the resulting excavations backfilled with engineered fill.

9.2.2. Excavations

Our evaluation of the excavation characteristics of the on-site soils is based on the results of our exploratory borings, site observations, and experience with similar materials.

9.2.3. Fill Materials

Soils with PI values of 15 or less (as evaluated by ASTM D 4318) are generally suitable for use as engineered fill. Our Atterberg limits test indicated the PI values ranging between 0 (non-plastic) and 21. Based on this test result, some of the on-site soils are not suitable for re-use as engineered fill.

Engineered fill should not include organic material, construction debris, or other nonsoil fill materials. Rock particles and clay lumps should not be larger than 4 inches in dimension. Unsuitable material should be disposed of off-site or in non-structural areas.

9.2.4. Grading and Subgrade Preparation

In general, grading operations should be performed in accordance with Section 205 of the COT/PC Specifications.

Due to potential conflicts with underground utilities, we recommend that the subgrade be improved by the application of Geogrid (Tensar Geogrid TX5 or equivalent). Geogrid should be placed in accordance with the manufacturer's instructions.

Alternatively, if Geogrid is not applied we recommend new pavements be supported on 6 inches of subgrade that is compacted by appropriate mechanical methods to a relative compaction of 95 percent as evaluated by ASTM D 698 at a moisture content generally near optimum. The thickness of the improvement zone should be measured from the bottom of the AB layer.

In areas where excessive moisture is encountered so that the above compaction cannot be achieved and/or the subgrade surface is unstable and yielding (pumping) under the roller wheels, subgrade soils should be scarified to a depth of 12 inches, aerated, and recompacted as specified above. Alternatively, subgrade soils in problem areas should be and replaced with engineered fill to a depth of 12 inches below the bottom of the AB.

9.3. Pavement Design Summary

The following sections present our design assumptions and recommendations for the new flexible pavement section of Escalante Road between Pantano Road and Apache Well Drive, as this roadway is scheduled for full-depth pavement reconstruction.

The pavement section was developed using the Active Practices Guidelines issued by the COT Department of Transportation (Guidelines) and the Arizona Department of Transportation (ADOT) Preliminary Engineering and Design Manual (PEDM). We assumed that the subgrade will be improved by the application of Geogrid or overexcavation, as outlined in Section 9.2.4 of this report. The new pavement sections are designed for a 20-year service life.

9.3.1. Traffic

The future traffic numbers used in this report are based on traffic counts provided by Kimley-Horn and Associates, Inc. (KHA), and later communication with the KHA. This information is presented in Appendix D. Based on the above information, and using the procedures outlined in the Guidelines and PEDM, the design number of equivalent single axle loads (ESALs) for the design lane during the 20-year design period was calculated as approximately 2,106,780.

9.3.2. R-Value and Resilient Modulus

The analysis for the design R-value for the pavement section has been performed based on procedures detailed in the Guidelines and the PEDM, using correlated R-values. The correlated R-values were derived from the PI and percent passing No. 200 Sieve test results. A summary of the R-values for this project is presented in Table 1 below:

Location	Sample Depth (ft)	Correlated R-Value
B-1	1.5-3.0	34
B-3	1.5-3.0	59
B-5	1.5-3.0	88

Table 1 – R-value Summary

In the interest of conservatism, we recommend that an R-value of 30 be used for pavement design for this project.

If the project needs fill from an off-site source, we recommend the soils used for subgrade support should have an R-value of 30 or more. If during construction, the subgrade is found to vary from the expected soil conditions, we should be contacted so we may re-evaluate our recommended R-values. Based on the above design R-values, the design subgrade resilient modulus (M_R) value of 13,009 pounds per square inch (psi) was calculated in accordance with the Guidelines.

9.3.3. Statistical Parameters

A standard deviation of 0.40 was used for design of the flexible pavement in accordance with the Guidelines. The level of reliability and standard normal deviation (Z_R) values were selected in accordance with the Guidelines for the arterial functional classification. Their respective values are presented in the table below:

Roadway	Functional Classification	Standard Deviation	Level of Reliability	Standard Normal Deviation
Escalante Road between Pantano Road and Apache Well Drive	Arterial	0.40	95 %	-1.645

 Table 2 – Summary of Statistical Parameters

9.3.4. Serviceability Index

Initial and terminal serviceability indices were selected for the pavement design of the roadways in accordance with the Guidelines. A summary of the serviceability indices for each roadway is provided in the table below:

Roadway	Functional Classification	Initial Serviceability Index	Terminal Serviceability Index	Change in Serviceability
Escalante Road between Pantano Road and Apache Well Drive	Arterial	4.5	2.5	2.0

Table 3 – Summary of Serviceability Parameters

9.3.5. Layer Coefficients

The following structural coefficients were used for the pavement structure in accordance with the Guidelines:

- AC: 0.44.
- AB: 0.14.

A drainage coefficient of 1.25 was used for the AB coefficient as recommended in the Guidelines.

As mentioned in Section 4 above, due to conflicts with existing shallow utilities, it is recommended that the subgrade be improved using Geogrid (Tensar Geogrid TX5 or equivalent). In this case the AB layer coefficient is 0.286.

9.3.6. Asphalt Pavement Section Recommendations

The structural number (SN) was calculated based on the parameters described above. The table below presents the calculated SN value and the recommended structural pavement sections. The AC thickness meets the COT requirements. Supporting

documentation of the pavement optimization design using Geogrid is presented in Appendix E:

Roadway	SN	AC (in) ¹	$AB(in)^2$			
COT Preferred Pavement with Geogrid	3.99	5	5			
Alternative Pavement without Geogrid	3.20	5.5	5			
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.						

 Table 4 – Structural Pavement Sections for 20-Year Design Life

The above pavement structural section has been designed with the assumption that the subgrade is prepared by as recommended in Section 9.2.4.

10. SITE DRAINAGE

Surface drainage should be provided to divert water away from paved surfaces. Surface water should also not be permitted to pond on or below pavement areas. Positive drainage for this project is defined as a slope of 2 percent or more for a distance of 5 feet or more away from the pavements. To deter accumulation of water below the new pavement sections, the bottom of the overexcavated zone below the new pavement should be sloped toward the edges of the roadway.

11. PRE-CONSTRUCTION CONFERENCE

We recommend that a pre-construction conference be held. Representatives of the owner, the civil engineer, Ninyo & Moore, and the contractor should be in attendance to discuss the project plans and schedule. Our office should be notified if the project description included herein is incorrect or if the project characteristics are significantly changed.

12. CONSTRUCTION OBSERVATION AND TESTING

During construction operations, we recommend that Ninyo & Moore perform observation and testing services for the project. These services should be performed to evaluate exposed subgrade conditions, including the extent and depth of overexcavation, to evaluate the suitability of proposed borrow materials for use as engineered fill and to observe placement and test compaction of fill soils. Qualified subcontractors utilizing appropriate techniques and construction materials should perform construction of the proposed improvements.

13. LIMITATIONS

The field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation will be performed upon request. Please also note that our evaluation was limited to assessment of the geotechnical aspects of the project, and did not include evaluation of structural issues, environmental concerns, or the presence of hazardous materials.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document.

This report is intended for design purposes only. It does not provide sufficient data to prepare an accurate bid by contractors. It is suggested that the bidders and their geotechnical consultant perform an independent evaluation of the subsurface conditions in the project areas. The

independent evaluations may include, but not be limited to, review of other geotechnical reports prepared for the adjacent areas, site reconnaissance, and additional exploration and laboratory testing.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are encountered, our office should be notified and additional recommendations, if warranted, will be provided upon request. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

14. **REFERENCES**

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards.

- Arizona Department of Transportation (ADOT), 1989, Preliminary Engineering and Design Manual, Materials Section, 3rd Edition: dated March.
- City of Tucson, Arizona, Department of Transportation, Engineering Division, 1987, Active Practices Guidelines: dated June 1.

Ninyo & Moore, In-house proprietary information.

	N inyo &	Moore	BORING LOCATIONS	FIGURE
Approximate Scale: 1 inch = 650 feet Note: Dimensions, directions, and locations are approximate.	PROJECT NO: 604817002	DATE: 12/15	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ESCALANTE ROAD BETWEEN PANTANO ROAD AND APACHE WELL DRIVE TUCSON, ARIZONA	2

APPENDIX A

BORING LOGS

Field Procedure for the Collection of Relatively Undisturbed Samples

Relatively undisturbed soil samples were obtained in the field using the following methods.

The Modified Split-Barrel Drive Sampler

The sampler, with an external diameter of 3.0 inches, was lined with 1-inch long, thin brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a hammer or the Kelly bar of the drill rig in general accordance with ASTM D 3550. The driving weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer or bar, and the number of blows per foot of driving are presented on the boring logs as an index to the relative resistance of the materials sampled. The samples were removed from the sample barrel in the brass rings, sealed, and transported to the laboratory for testing.

	SOIL CLASSIFICATION CHART PER ASTM D 2488							GRAIN SIZE				
DD				SECON	DARY DIVISIONS		DESCRIPTION		SIEVE	GRAIN	APPROXIMATE	
		510113	GR	OUP SYMBOL	GROUP NAME		DESCRIPTION		SIZE	SIZE	SIZE	
		CLEAN GRAVEL		GW	well-graded GRAVEL		Во	ulders	> 12"	> 12"	Larger than	
		less than 5% fines		GP	poorly graded GRAVEL						Dasketball-sized	
	GRAVEI			GW-GM	well-graded GRAVEL with silt		Co	bbles	3 - 12"	3 - 12"	Fist-sized to basketball-sized	
	more than	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt							
	coarse	CLASSIFICATIONS 5% to 12% fines		GW-GC	well-graded GRAVEL with clay			Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized	
	retained on			GP-GC	poorly graded GRAVEL with clay		Gravel				Pag sized to	
	INO. 4 SIEVE	GRAVEL with		GM	silty GRAVEL			Fine	#4 - 3/4"	0.19 - 0.75"	thumb-sized	
COARSE- GRAINED		FINES more than		GC	clayey GRAVEL			0	#40 #4	0.070 0.40"	Rock-salt-sized to	
SOILS		12% fines		GC-GM	silty, clayey GRAVEL			Coarse	#10 - #4	0.079 - 0.19"	pea-sized	
50% retained		CLEAN SAND less than 5% fines		SW	well-graded SAND		Sand Medi	Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to	
on No. 200 sieve	SAND 50% or more of coarse fraction passes No. 4 sieve			SP	poorly graded SAND						rock-salt-sized	
		SAND with DUAL CLASSIFICATIONS 5% to 12% fines		SW-SM	well-graded SAND with silt			Fine	#200 - #40	0.0029 -	Flour-sized to	
				SP-SM	poorly graded SAND with silt					0.017	30gai-3i2eu	
			NS /// s	SW-SC	well-graded SAND with clay		F	nes	Passing #200	< 0.0029"	Flour-sized and smaller	
				SP-SC	poorly graded SAND with clay							
		SAND with FINES more than 12% fines		SM	silty SAND		PLASTICITY CHART				•	
				SC	clayey SAND							
				SC-SM	silty, clayey SAND		7	D				
				CL	lean CLAY		° 6					
	SILT and	INORGANIC		ML	SILT		(Id) 5					
	CLAY liquid limit			CL-ML	silty CLAY			D		CH or OF		
FINE-	less than 50%	OBCANIC		OL (PI > 4)	organic CLAY		≚ 3	p				
SOILS		ORGANIC		OL (PI < 4)	organic SILT			D	CL or (WH or OH	
50% or				СН	fat CLAY		I SV 1					
No. 200 sieve	SILT and CLAY	INORGANIC		MH	elastic SILT			CL -	ML ML or	OL		
	liquid limit 50% or more	OPCANIC		OH (plots on or above "A"-line)	organic CLAY			0 10	20 30 40	50 60 70	80 90 100	
		URGANIC		OH (plots below "A"-line)	organic SILT				LIQUID	LIMIT (LL), %		
	Highly Organic Soils			PT	Peat							

APPARENT DENSITY - COARSE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER		
DENSITY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	
Very Loose	≤4	≤ 8	<u>≤</u> 3	≤ 5	
Loose	5 - 10	9 - 21	4 - 7	6 - 14	
Medium Dense	11 - 30	22 - 63	8 - 20	15 - 42	
Dense	31 - 50	64 - 105	21 - 33	43 - 70	
Very Dense	> 50	> 105	> 33	> 70	

Ninyo & Moore

CONSISTENCY - FINE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER		
CONSIS- TENCY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	
Very Soft	< 2	< 3	< 1	< 2	
Soft	2 - 4	3 - 5	1 - 3	2 - 3	
Firm	5 - 8	6 - 10	4 - 5	4 - 6	
Stiff	9 - 15	11 - 20	6 - 10	7 - 13	
Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26	
Hard	> 30	> 39	> 20	> 26	

USCS METHOD OF SOIL CLASSIFICATION

Explanation of USCS Method of Soil Classification DATE

DEPTH (feet)	Bulk SAMPLES	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BORING LOG EXPLANATION SHEET					
0							Bulk sample.					
							Modified split-barrel	drive sampler. lified split-barrel dri	ve samnler			
									ve sampler.			
							Sample retained by ot	hers.				
							Standard Penetration	Test (SPT).				
5 -	\Box						No recovery with a SI	PT.				
		XX/XX					Shelby tube sample. I	Distance pushed in in	nches/length of sample	recovered in inches.		
							No recovery with She	lby tube sampler.				
							Continuous Push Sam	ple.				
			Ş				Seepage.					
10-			ļi. ₩ļi				Groundwater encount Groundwater measure	ered during drilling.				
						-						
						SM	MAJOR MATERIAL Solid line denotes uni	<u>TYPE (SOIL)</u> : t change.				
						CL	Dashed line denotes n	naterial change.				
							Attitudes: Strike/Dip					
							c: Contact					
15 -							J: Joint f: Fracture					
							F: Fault					
							s: Shear					
	$\left \right $						bss: Basal Slide Surfa	ce				
							sz: Shear Zone					
							sbs: Shear Bedding Surface					
							The total depth line is	a solid line that is d	rawn at the bottom of	the boring.		
20							<u> </u>		BORINGLOG	<u> </u>		
	Nining Manpa Evaluation of Baring Log Symbols						mbols					
			Э					PROJECT NO.	DATE	FIGURE		

PLES			F)			DATE DRILLED9/29/15BORING NOB-1
set) SAM	Ю	(%)	r (PCI	_	TION .	GROUND ELEVATION2,754' ± (MSL) SHEET OF
TH (fe	VS/FC	TURE	NSIT	MBO	FICA S.C.S.	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)
DEP 3ulk riven	BLOV	NOIS	Y DE	SY	LASS U.	DRIVE WEIGHT 140 lbs. (Automatic) DROP 30"
			DR		0	SAMPLED BY NAG LOGGED BY NAG REVIEWED BY DT
0						DESCRIPTION/INTERPRETATION ASPHALT CONCRETE: Approximately 5 inches thick.
	41				SC	<u>ALLUVIUM</u> : Reddish brown, moist, medium dense, clayey SAND; trace gravel.
						Total Depth = 3 feet. Groundwater not encountered during drilling.
						Backfilled and asphalt concrete patched on 9/29/15 shortly after completion of drilling.
						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.
						The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
10						
15						
20						
				0		BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM ESCALANTE
		14	U	Š.		PANTANO ROAD TO APACHE WELL DRIVE, TUCSON, ARIZONA PROJECT NO. DATE FIGURE
	V				V	604817002 12/15 A-1

PLES			(=			DATE DRILLED 9/29/15 BORING NO. B-2		
et) SAMI	D	(%)	(PCF		TION	GROUND ELEVATION 2,752' ± (MSL) SHEET OF		
TH (fe	VS/FC	rure	VSITY	MBO	ASSIFICA U.S.C.S.	IFICA S.C.S.	IFICA S.C.S.	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)
DEP	BLOV	-SIOM	Y DEI	S		DRIVE WEIGHT140 lbs. (Automatic) DROP30"		
			DR		0	SAMPLED BY NAG LOGGED BY NAG REVIEWED BY DT		
0						DESCRIPTION/INTERPRETATION ASPHALT CONCRETE: Approximately 2 1/2 inches thick.		
					SP-SM	<u>ALLUVIUM</u> : Light brown, dry, dense, poorly graded SAND with silt; trace gravel.		
	59							
						Total Depth = 3 feet.		
						Groundwater not encountered during drilling.		
						Backfilled and asphalt concrete patched on 9/29/15 shortly after completion of drilling.		
						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.		
						The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.		
10								
15								
20								
	• • •							
	V /	Π	U «	Se	Ma	PANTANO ROAD TO APACHE WELL DRIVE, TUCSON, ARIZONA		
	V				V	604817002 12/15 A-2		

0 0
B B B C B C B
Image: Section of the section of th
B C SAMPLED BYNAGLOGGED BYNAGREVIEWED BYDT
0 ASPHALT CONCRETE: Approximately 3 1/4 inches thick. ALLUVIUM: Brown, dry, medium dense, silty clayey SAND; few gravel. 28 Total Depth = 3 feet. 5 Groundwater not encountered during drilling. Backfilled and asphalt concrete patched on 9/29/15 shortly after completion of drilling. Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretation of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
SC-SM ALLUVIUM: Brown, dry, medium dense, silty clayey SAND; few gravel. 28 Total Depth = 3 feet. Groundwater not encountered during drilling. Backfilled and asphalt concrete patched on 9/29/15 shortly after completion of drilling. Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretation of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 Image: State
28 Total Depth = 3 feet. 5 Groundwater not encountered during drilling. Backfilled and asphalt concrete patched on 9/29/15 shortly after completion of drilling. Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretation of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 10
28 Total Depth = 3 feet. Groundwater not encountered during drilling. Backfilled and asphalt concrete patched on 9/29/15 shortly after completion of drilling. Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretation of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 Image: Construction bids and design documents and design documents.
5 Total Depth = 3 feet. 5 Groundwater not encountered during drilling. Backfilled and asphalt concrete patched on 9/29/15 shortly after completion of drilling. Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretation of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 Interpretation of sufficiently accurate for preparing construction bids and design documents.
5 Backfilled and asphalt concrete patched on 9/29/15 shortly after completion of drilling. Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretation of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 Image: Construction of the purposes of the purpose of the purposes of the purpose of t
5 Image: Contract and asphare contract patched on 9/29/13 shorty after completion of drilling. Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretation of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 Image: Construction bids and design documents
Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretation of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
The ground elevation shown above is an estimation only. It is based on our interpretation of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
of published maps and other documents reviewed for the purposes of this evaluation. It i not sufficiently accurate for preparing construction bids and design documents.
BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM ESCALANTE, PANTANO ROAD TO APACHE WELL DRIVE, TUCSON. ARIZONA
PROJECT NO. DATE FIGURE 604817002 12/15 A-3

PLES			(=			DATE DRILLED 9/29/15 BORING NO. B-4
et) SAMI	DOT	(%)	(PCF		NOIL	GROUND ELEVATION 2,753' ± (MSL) SHEET OF
TH (fe	VS/FC	rure	VSITY	MBO	IFICA. S.C.S.	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)
DEP	BLOV	-SIOM	Y DEI	S	LASS U.	DRIVE WEIGHT140 lbs. (Automatic) DROP30"
			DR		0	SAMPLED BY NAG LOGGED BY NAG REVIEWED BY DT
0						DESCRIPTION/INTERPRETATION ASPHALT CONCRETE: Approximately 3 inches thick.
					SM	ALLUVIUM: Light brown, dry, dense, silty SAND.
	59					
						Total Depth = 3 feet.
						Groundwater not encountered during drilling.
						Backfilled and asphalt conrete patched on 9/29/15 shortly after completion of drilling.
						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.
						The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction hide and design documents
						not sufficiently accurate for preparing construction bids and design documents.
10						
15						
	. <i></i>			1		BORING LOG
	V/	<u> </u>	10 ·	Sz 🖌	MQ	TUCSON PAVEMENT RECONSTRUCTION PROGRAM ESCALANTE, PANTANO ROAD TO APACHE WELL DRIVE, TUCSON, ARIZONA
	V				V -	PROJECT NO. DATE FIGURE 604817002 12/15 A-4

PLES			(=			DATE DRILLED9/29/15BORING NOB-5			
eet) SAM	DOT	(%)	(PCI		VIION .	GROUND ELEVATION2,740' ± (MSL) SHEET OF			
TH (fe	NS/FC	TURE	NSIT	MBO	S.C.S.	IFICA S.C.S.	IFICA S.C.S.	IFICA S.C.S.	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)
DEP Bulk riven	BLOV	MOIS	۲Y DE	SY	U. U.	DRIVE WEIGHT 140 lbs. (Automatic) DROP 30"			
			DR		0	SAMPLED BY NAG LOGGED BY NAG REVIEWED BY DT			
0						ASPHALT CONCRETE: Approximately 2 1/2 inches thick.			
	23				or-ow	ALLUVIUM: Brown, moist, medium dense, poorly graded SAND with silt; trace gravel. Total Depth = 3 feet.			
						Groundwater not encountered during drilling.			
						Backfilled and asphalt conrete patched on 9/29/15 shortly after completion of drilling.			
5						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.			
						The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.			
10									
15									
20									
				R- 1	AAn	BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM ESCALANTE,			
		"9		*		PANTANO ROAD TO APACHE WELL DRIVE, TUCSON, ARIZONA PROJECT NO. DATE FIGURE			
	•				7	604817002 12/15 A-5			

PLES			(i			DATE DRILLED9/29/15BORING NOB-6
et) SAM	Б	(%)	(PCI		NOIT.	GROUND ELEVATION2,721' ± (MSL) SHEET OF
TH (fe	VS/FC	TURE	NSITY	MBO	IFICA S.C.S.	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)
DEP	BLOV	NOIS ⁻	Y DEI	SΥ	LASS U.3	DRIVE WEIGHT140 lbs. (Automatic) DROP30"
			DR		0	SAMPLED BY NAG LOGGED BY NAG REVIEWED BY DT
0						DESCRIPTION/INTERPRETATION ASPHALT CONCRETE: Approximately 2 3/4 inches thick.
					SM	ALLUVIUM: Reddish brown, moist, loose, silty SAND; trace gravel.
	13					
						Total Depth = 3 feet.
						Groundwater not encountered during drilling.
						Backfilled and asphalt conrete patched on 9/29/15 shortly after completion of drilling.
						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.
						The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents
						not sufficiently accurate for preparing construction olds and design documents.
10						
15						
				<u> </u>		BORING LOG
	V //	\Box_{i}^{\prime}	10 4	Sz	Ma	TUCSON PAVEMENT RECONSTRUCTION PROGRAM ESCALANTE, PANTANO ROAD TO APACHE WELL DRIVE, TUCSON, ARIZONA
	V	J			V	PROJECTINO. DATE FIGURE 604817002 12/15 A-6

APPENDIX B

LABORATORY TESTING

Classification

Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings in Appendix A.

Gradation Analysis

One gradation analysis test was performed on a selected representative soil sample in general accordance with ASTM D 422. The grain-size distribution curves are shown in Figures B-1 through B-3. These test results were utilized in evaluating the soil classification in accordance with the USCS.

Atterberg Limits

Tests were performed on a selected representative fine-grained soil sample to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. These test results were utilized to evaluate the soil classification in accordance with the USCS. The test results and classifications are shown on Figure B-4.

SYMBOL	LOCATION	DEPTH (FT)	LIQUID LIMIT, LL	PLASTIC LIMIT, PL	PLASTICITY INDEX, PI	USCS CLASSIFICATION (Fraction Finer Than No. 40 Sieve)	USCS (Entire Sample)	
•	B-1	1.5-3.0	36	15	21	CL	SC	
-	B-3	1.5-3.0	22	16	6	CL-ML	SC-SM	
•	B-5	1.5-3.0			NP	ML	SP-SM	
PLASTICITY INDEX, PI	ES NON-PLAST 60 50 40 30 20 10 0	- ML	CL or OL ML or O		H or OH	1 or OH		
	0 10	20 3	30 40	50 6	0 70	80 90 100		
LIQUID LIMIT, LL								
	PERFC	RMED IN GE	NERAL ACCO	RDANCE WIT	H ASTM D 4318	}		
Niny		re	AT	TERBE		S TEST RESUL	TS FIGUR	
, ,	V				-			
 PROJECT NO.	D	ATE	TUCSO	N PAVEMENT F	ECONSTRUCTIO	N PROGRAM - ESCALANTE	ROAD	

APPENDIX C

PAVEMENT AND CORE SUMMARY

ESCALANTE ROAD (PANTANO RD TO APACHE WELL DR) - PAVEMENT AND CORE SUMMARY

No.	Location	Approximate AC thickness (in)*	Recovered AC Thickness (in)	Core Description	Pavement Condition
B-1	Westbound, 300 feet east of Pantano Road	5	5	Two lifts, 2" and 3", numerous voids.	Extensive longitudinal, transverse, block and irregular cracking, some sealed.
В-2	Eastbound, 240 feet east of Manitoba Avenue	2.5	2.5	Two lifts, 1.5" and 1", few voids.	Extensive longitudinal, transverse and irregular cracking, severe raveling, potholes, patches, some cracks sealed.
В-3	Westbound, 480 feet west of Sarnoff Drive	3.25	3.25	Two lifts, 2.0" and 1.25", numerous interconnected voids.	Extensive longitudinal, transverse and irregular cracking, severe raveling, potholes, patches, some cracks sealed.
B-4	Eastbound, 350 feet east of Sarnoff Drive	3	3	Two lifts, 1.5" and 1.5", few voids, crack throughout core.	Extensive longitudinal, transverse and irregular cracking, severe raveling, potholes, patches, some cracks sealed.
B-5	Westbound, 240 feet west of Camino Seco	2.5	2.5	Two lifts, 1.5" and 1", few voids, week bond between lifts.	Extensive longitudinal, transverse and irregular cracking, severe raveling, potholes, patches, some cracks sealed.
B-6	Eastbound, 930 feet east of Camino Seco	2.75	2.75	One lift, 1.75", few voids.	Extensive longitudinal, transverse and irregular cracking, severe raveling, potholes, patches, some cracks sealed.

Notes:

* Measured in the boring
APPENDIX D

TRAFFIC DATA

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-002 Station ID: Wed 10/07/2015 Escalante Rd. btwn. Pantano Rd. & Manitoba Ave. 32.1773848, -110.820204 Latitude: 0' 0.000 Undefined

Eastbound												La		Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	0	7	2	0	0	0	0	0	0	0	0	0	0	9
01:00	0	8	1	0	0	0	0	0	0	0	0	0	0	9
02:00	0	1	0	0	0	0	0	0	0	0	0	0	0	1
03:00	0	4	0	0	0	0	0	0	0	0	0	0	0	4
04:00	0	6	0	0	0	0	0	0	0	0	0	0	0	6
05:00	0	9	3	2	0	0	0	0	0	0	0	0	0	14
06:00	0	26	4	5	1	0	0	0	0	0	0	0	0	36
07:00	0	81	12	4	6	0	0	0	0	0	0	0	0	103
08:00	0	61	5	2	0	1	0	0	0	0	0	0	0	69
09:00	2	43	3	2	2	1	0	0	1	0	0	0	0	54
10:00	0	47	11	2	3	0	0	0	1	0	0	0	0	64
11:00	0	58	9	2	3	1	0	0	0	0	0	0	0	73
12 PM	1	93	16	3	4	0	0	0	0	0	0	0	0	117
13:00	0	81	13	3	0	0	0	0	0	0	0	0	0	97
14:00	1	106	19	4	3	0	0	0	0	0	0	0	0	133
15:00	0	116	29	4	7	0	0	0	0	0	0	0	0	156
16:00	0	165	32	1	5	0	0	0	0	0	0	0	0	203
17:00	0	201	20	2	3	0	0	0	0	0	0	0	0	226
18:00	0	142	17	2	9	0	0	0	0	0	0	0	0	170
19:00	1	91	12	1	2	0	0	0	0	0	0	0	0	107
20:00	1	79	7	1	0	0	0	0	0	0	0	0	0	88
21:00	0	57	3	1	0	0	0	0	0	0	0	0	0	61
22:00	0	31	2	1	0	0	0	0	0	0	0	0	0	34
23:00	0	21	2	0	0	0	0	0	0	0	0	0	0	23
Day Total	6	1534	222	42	48	3	0	0	2	0	0	0	0	1857
Percent	0.3%	82.6%	12.0%	2.3%	2.6%	0.2%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	
AM Peak	09:00	07:00	07:00	06:00	07:00	08:00			09:00					07:00
Vol.	2	81	12	5	6	1			1					103
PM Peak	12:00	17:00	16:00	14:00	18:00									17:00
Vol.	1	201	32	4	9									226
Grand Total	6	1534	222	42	48	3	0	0	2	0	0	0	0	1857
Percent	0.3%	82.6%	12.0%	2.3%	2.6%	0.2%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-002 Station ID: Wed 10/07/2015 Escalante Rd. btwn. Pantano Rd. & Manitoba Ave. 32.1773848, -110.820204 Latitude: 0' 0.000 Undefined

Westbound												La		Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	0	5	Ō	0	0	0	0	0	0	0	0	0	0	5
01:00	0	7	0	0	0	0	0	0	0	0	0	0	0	7
02:00	0	1	0	0	0	0	0	0	0	0	0	0	0	1
03:00	0	4	1	0	1	0	0	0	0	0	0	0	0	6
04:00	0	19	5	0	1	0	0	0	0	0	0	0	0	25
05:00	0	45	11	0	3	0	0	0	0	0	0	0	0	59
06:00	1	93	21	2	17	1	0	0	0	0	0	0	0	135
07:00	1	206	37	4	10	0	0	0	0	0	0	0	0	258
08:00	0	113	19	3	4	0	0	0	0	0	0	0	0	139
09:00	0	58	10	3	4	0	0	0	0	0	0	0	0	75
10:00	1	66	13	2	5	0	0	0	0	0	0	0	0	87
11:00	0	66	7	2	5	0	0	1	0	0	0	0	0	81
12 PM	0	89	19	2	6	0	0	0	0	0	0	0	0	116
13:00	1	74	11	2	2	0	0	0	0	0	0	0	0	90
14:00	1	95	16	3	3	0	0	0	0	0	0	0	0	118
15:00	1	76	19	5	4	0	0	0	0	0	0	0	0	105
16:00	1	100	14	4	1	1	0	0	0	0	0	0	0	121
17:00	0	99	16	3	7	0	0	0	0	0	0	0	0	125
18:00	0	83	9	2	7	0	0	0	0	0	0	0	0	101
19:00	0	54	12	2	3	0	0	0	0	0	0	0	0	71
20:00	0	47	7	2	1	0	0	0	0	0	0	0	0	57
21:00	0	24	5	1	2	0	0	0	0	0	0	0	0	32
22:00	0	18	6	1	0	0	0	0	0	0	0	0	0	25
23:00	0	9	1	1	0	0	0	0	0	0	0	0	0	11
Day	7	1451	259	44	86	2	0	1	0	0	0	0	0	1850
Total			200		00	_								1000
Percent	0.4%	78.4%	14.0%	2.4%	4.6%	0.1%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	
AM Peak	06:00	07:00	07:00	07:00	06:00	06:00		11:00						07:00
Vol.	1	206	37	4	17	1		1						258
PM Peak	13:00	16:00	12:00	15:00	17:00	16:00								17:00
Vol.	1	100	19	5	7	1								125
Orenet														
Grand	7	1451	259	44	86	2	0	1	0	0	0	0	0	1850
I Otal Dereent	0 40/	70 /0/	14 00/	2 40/	1 60/	0 10/	0.00/	0 10/	0.00/	0.00/	0.00/	0.00/	0.0%	
Percent	0.4%	/8.4%	14.0%	2.4%	4.0%	0.1%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-002 Station ID: Wed 10/07/2015 Escalante Rd. btwn. Pantano Rd. & Manitoba Ave. 32.1773848, -110.820204 Latitude: 0' 0.000 Undefined

Eastbound,	Westbound	d										Ld		Ondenne
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	0	12	2	0	0	0	0	0	0	0	0	0	0	14
01:00	0	15	1	0	0	0	0	0	0	0	0	0	0	16
02:00	0	2	0	0	0	0	0	0	0	0	0	0	0	2
03:00	0	8	1	0	1	0	0	0	0	0	0	0	0	10
04:00	0	25	5	0	1	0	0	0	0	0	0	0	0	31
05:00	0	54	14	2	3	0	0	0	0	0	0	0	0	73
06:00	1	119	25	7	18	1	0	0	0	0	0	0	0	171
07:00	1	287	49	8	16	0	0	0	0	0	0	0	0	361
08:00	0	174	24	5	4	1	0	0	0	0	0	0	0	208
09:00	2	101	13	5	6	1	0	0	1	0	0	0	0	129
10:00	1	113	24	4	8	0	0	0	1	0	0	0	0	151
11:00	0	124	16	4	8	1	0	1	0	0	0	0	0	154
12 PM	1	182	35	5	10	0	0	0	0	0	0	0	0	233
13:00	1	155	24	5	2	0	0	0	0	0	0	0	0	187
14:00	2	201	35	7	6	0	0	0	0	0	0	0	0	251
15:00	1	192	48	9	11	0	0	0	0	0	0	0	0	261
16:00	1	265	46	5	6	1	0	0	0	0	0	0	0	324
17:00	0	300	36	5	10	0	0	0	0	0	0	0	0	351
18:00	0	225	26	4	16	0	0	0	0	0	0	0	0	271
19:00	1	145	24	3	5	0	0	0	0	0	0	0	0	178
20:00	1	126	14	3	1	0	0	0	0	0	0	0	0	145
21:00	0	81	8	2	2	0	0	0	0	0	0	0	0	93
22:00	0	49	8	2	0	0	0	0	0	0	0	0	0	59
23:00	0	30	3	1	0	0	0	0	0	0	0	0	0	34
Day	10	2005	404	00	104	F	0	4	0	0	0	0	0	0707
Total	13	2985	481	80	134	5	0	1	2	0	0	0	0	3707
Percent	0.4%	80.5%	13.0%	2.3%	3.6%	0.1%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	
AM Peak	09:00	07:00	07:00	07:00	06:00	06:00		11:00	09:00					07:00
Vol.	2	287	49	8	18	1		1	1					361
PM Peak	14:00	17:00	15:00	15:00	18:00	16:00								17:00
Vol.	2	300	48	9	16	1								351
Grand	13	2085	481	86	134	5	0	1	2	0	0	0	0	3707
Total	13	2000	101	00	104	5	0		2	0	0	0	0	5/0/
Percent	0.4%	80.5%	13.0%	2.3%	3.6%	0.1%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	

APPENDIX E

PAVEMENT OPTIMIZATION DESIGN ANALYSIS BY TENSAR

SpectraPave4 PRO™ Tensal Pavement Optimization Design Analysis

Design Parameters for AASHTO (1993) Equation

Reliability (%)	= 95	Initial Serviceability	= 4.5
Standard Normal Deviate	= -1.645	Terminal Serviceability	= 2.5
Standard Deviation	= 0.4	Change in Serviceability	= 2

Aggregate fill shall conform to following requirement:

D50 <= 27mm (Base course)

Unstabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
ABC	Aggregate Base Course	20	0.140	1.25

Stabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
MSL	Mechanically Stabilized Base Cour	20	0.286	1.25

Unstabilized Pavement

Subgrade Modulus = 13,009 (psi) Structural Number = 3.250 Calculated Traffic (ESALs) = 2,336,000

Stabilized Pavement

Subgrade Modulus = 13,009 (psi) Structural Number = 3.988 Calculated Traffic (ESALs) = 8,957,000

LIMITATIONS OF THE REPORT

The designs, illustration nature, and do not con recommendations car	The designs, illustrations, information and other content included in this report are necessarily general and conceptual in nature, and do not constitute engineering advice or any design intended for actual construction. Specific design recommendations can be provided as the project develops.								
Project Name	Escalante East								
Company Name	Tensar								
Designer	Schlessinger Date 11/30/15								

This document was prepared using SpectraPave4 PRO™ Software Version 4.6.1 Developed by Tensar International Corporation Copyright 1998 - 2014, All Rights Reserved.

PAVEMENT EVALUATION TUCSON PAVEMENT RECONSTRUCTION PROGRAM ESCALANTE ROAD BETWEEN CALLE POLAR AND KOLB ROAD TUCSON, ARIZONA

PREPARED FOR:

Kimley-Horn & Associates, Inc. 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

PREPARED BY:

Ninyo & Moore Geotechnical and Environmental Sciences Consultants 1991 East Ajo Way, Suite 145 Tucson, Arizona 85713

> December 14, 2015 Project No. 604817002

1991 East Ajo Way, Suite 145 • Tucson, Arizona 85713 • Phone (520) 577-7600 • Fax (520) 577-7606

December 14, 2015 Project No. 604817002

Mr. Rick Solis, P.E. Kimley-Horn 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

Subject: Pavement Evaluation Tucson Pavement Reconstruction Program – Escalante Road Between Calle Polar and Kolb Road Tucson, Arizona

Dear Mr. Solis:

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, Ninyo & Moore has performed a pavement evaluation for the above-referenced site. The attached report presents our methodology, findings, conclusions, and recommendations regarding the geotechnical conditions at the project site.

We appreciate the opportunity to be of service to you during this phase of the project.

Marek J. Kasztalski, PE, PMP, LEED AP Senior Geotechnical Engineer 775

Fred Narcaroti Principal/Tucson Office Manager

MJK/DT/FFN/tlp

Distribution: (1) Addressee (Electronic Copy)

TABLE OF CONTENTS

1.	INTRODUCTION1						
2.	SCOPE OF SERVICES						
3.	SITE DESCRIPTION						
4.	PROPOSED CONSTRUCTION						
5.	EXISTING PAVEMENT CONDITION						
6.	FIELD EXPLORATION AND LABORATORY TESTING						
7.	SUBSURFACE CONDITIONS						
8.	CONCLUSIONS						
9.	RECOMMENDATIONS59.1. Recommended Pavement Structural Sections59.2. Earthwork69.2.1. Site Preparation69.2.2. Excavations69.2.3. Fill Materials79.2.4. Grading and Subgrade Preparation79.3. Pavement Design Summary89.3.1. Traffic89.3.2. R-Value and Resilient Modulus89.3.3. Statistical Parameters99.3.4. Serviceability Index99.3.5. Layer Coefficients109.3.6. Asphalt Pavement Section Recommendations10						
10.	SITE DRAINAGE						
11.	PRE-CONSTRUCTION CONFERENCE11						
12.	CONSTRUCTION OBSERVATION AND TESTING11						
13.	LIMITATIONS						
14.	REFERENCES14						

TABLES

Table 1 – R-value Summary	8
Table 2 – Summary of Statistical Parameters	9
Table 3 – Summary of Serviceability Parameters	10
Table 4 – Structural Pavement Sections for 20-Year Design Life	11

Figures

Figure 1 – Site Location Figure 2 – Boring Locations

Appendices

Appendix A – Boring Logs

Appendix B – Laboratory Testing

Appendix C – Pavement and Core Summary

Appendix D – Traffic Data

Appendix E – Pavement Optimization Design Analysis by Tensar

1. INTRODUCTION

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, we have performed a pavement evaluation for the Escalante Road Pavement Reconstruction project between Calle Polar and Kolb Road, in Tucson, Arizona. The purpose of our evaluation was to assess the pavement and subgrade conditions along the project alignment in order to provide geotechnical recommendations for design and construction. This report presents the results of our evaluation, conclusions, and recommendations regarding the proposed construction.

2. SCOPE OF SERVICES

The scope of our services generally included:

- Preparing a field testing plan and associated permit application for submittal to the City of Tucson (COT).
- Conducting a visual reconnaissance of the pavement along the alignment and marking out the boring locations.
- Notifying Arizona811 of our boring locations prior to conducting the field work.
- Arranging for traffic control measures to conduct the field work.
- Coring the existing asphaltic concrete (AC) pavement at 4 locations along the project alignment.
- Exploring the subsurface soils within the project limits by drilling, logging, and sampling 4 exploratory soil borings to approximate depths of 3 feet below ground surface (bgs). The boring logs are presented in Appendix A.
- Performing laboratory tests on selected samples collected from our borings to evaluate gradation and Atterberg limits. The results of the laboratory tests are included in Appendix B.
- Preparing this report presenting our findings, conclusions and recommendations regarding the proposed reconstruction.

Our scope of services did not include environmental consulting services such as hazardous waste sampling or analytical testing at the site. A detailed scope of services and estimated fee for such services can be provided upon request.

3. SITE DESCRIPTION

The project site is located in Section 30 of Township 14 South, Range 15 East relative to the Gila and Salt River Base Line and Meridian. The project alignment extends along Escalante Road, between Calle Polar and Kolb Road in Tucson, Arizona (Figure 1).

At the time of our evaluation residential developments existed to the north of the project alignment. South of Escalante Road, the project alignment was adjacent to the Davis Monthan Air Force Base. The roadway section consisted of one travel lane in each direction, concrete curb and sidewalks along most of the north side of the roadway. No gutter was observed along the project alignment.

4. PROPOSED CONSTRUCTION

The COT has identified several segments of the existing street network for reconstruction and/or rehabilitation in fiscal year (FY) 2016 under Bid Package 2. The scope of this report includes Escalante Road, between Calle Polar and Kolb Road. The project alignment is approximately ³/₄ of a mile long.

We understand that the COT anticipates full-depth reconstruction of the existing roadway along the project alignment. The City proposes a new pavement section consisting of 5 inches of AC per of the COT Department of Transportation Standard Specifications Section 406 over 5 inches of aggregate base (AB) per Section 303 of the COT Standard Specifications.

We further understand that the COT intends to use Tucson Department of Transportation (TDOT) AC Mix No. 2 PG 76-22TR+ for the surface layer and TDOT AC Mix No. 1 PG 70-10 for the underlying layer. Both layers are proposed to be 2.5 inches thick.

Due to conflicts with shallow utility lines, subgrade improvement by overexcavation will not be performed and the new pavement section will be constructed on subgrade improved with Geogrid (Tensar Geogrid TX5 or equivalent).

The scope of this exploration included evaluation of the existing pavement section and subgrade soils in order to provide recommendations for pavement reconstruction in accordance with the current COT practice. Calculations for the new pavement section supporting the new construction proposed by the COT are presented in Section 9.3 and in Appendix E of this report.

5. EXISTING PAVEMENT CONDITION

On September 28, 2015, Ninyo & Moore conducted a limited visual evaluation of the pavement surface along the project alignment. Based on our field observations, the AC pavement exhibited signs of severe distress in many locations along the project alignment primarily consisting of extensive alligator cracking with considerable spalling, longitudinal, transverse and irregular cracking, flushing and potholes. Some of the cracks exhibited evidence of past sealing. Asphaltic concrete patches were observed at some locations which were probably associated with past maintenance efforts (pothole and crack repairs) or with underground utility work. The crack widths generally varied between hairline (less than 1/8-inch) and over one inch.

In our opinion, the distress observed along the project alignment indicates structural failure and is related to a combination of pavement age, traffic, and environmental impacts.

6. FIELD EXPLORATION AND LABORATORY TESTING

On September 28, 2015, Ninyo & Moore conducted a geotechnical exploration in order to evaluate the subsurface conditions and collect AC cores and soil samples for laboratory testing. Our evaluation consisted of coring the existing AC pavement, drilling, logging, and sampling four small-diameter borings, denoted as B-1 through B-4, utilizing a CME-45 truck-mounted drill rig equipped with hollow-stem augers. The borings extended to depths of approximately 3 feet bgs. The approximate locations of the borings are depicted on Figure 2.

Ninyo & Moore personnel logged the borings in general accordance with the Unified Soil Classification System (USCS) and American Society for Testing and Materials (ASTM) D 2488 by observing cuttings and drive samples. Collected ring samples were trimmed in the field, wrapped in plastic bags, and placed in cylindrical plastic containers to retain in-place moisture conditions.

The soil samples collected from our drilling activities were transported to the Ninyo & Moore laboratory in Tucson, Arizona for geotechnical laboratory testing. The tests included gradation and Atterberg limits. A description of each laboratory test method and the test results are presented in Appendix B.

7. SUBSURFACE CONDITIONS

Our knowledge of the subsurface conditions at the project site is based on our field exploration, laboratory testing, and general experience in the area. More detailed stratigraphic information is presented on the boring logs in Appendix A, attached to this report. The boring logs contain our field and laboratory test results, as well as our interpretation of conditions believed to exist between actual samples retrieved. Therefore, these boring logs contain both factual and interpretive information. Lines delineating subsurface strata on the boring logs are intended to group soils having similar engineering properties and characteristics. They should be considered approximate as the actual transition between soil types (strata) may be gradual. A key to the soil symbols and terms used on the boring logs is provided in Appendix A.

7.1. Asphaltic Concrete

Asphaltic concrete pavement was encountered at the surface of each of our borings. The AC thickness varied between approximately 2 ³/₄ and 3 inches in our borings. It should be noted that the thickness of the AC pavement between the sampling locations may vary and could be different from that encountered at our sampling locations. Detailed core descriptions are presented in Appendix C.

inyo & Moor

Aggregate base was not observed in our borings. It is possible the AB material blended with the native subgrade soils, such that delineation of the AB/subgrade interface was not easily interpreted.

7.2. Alluvium

Native alluvial soils were encountered below the pavement section, and extended to the boring termination depths. The alluvium generally consisted of medium dense, clayey sands with varying amounts of gravel.

8. CONCLUSIONS

Based on the results of our visual and subsurface evaluations, laboratory testing, and data analysis, geotechnical considerations include the following:

- The on-site soils generally include clayey sands, with a plasticity index (PI) varying between 12 and 15. These soils may be sensitive to moisture content fluctuations and may be difficult to compact especially at higher moisture contents. The contractor should be aware of this condition.
- Due to the relatively widely spaced nature of our borings, soil conditions may differ from what was observed during our field exploration.
- The pavement exhibits significant distress in many locations along the project alignment consisting mainly of transverse, block and irregular cracking.
- Full-depth pavement reconstruction is considered for this project as proposed by the COT.

9. **RECOMMENDATIONS**

The following sections present our geotechnical recommendations for the project. If the proposed construction is changed from that discussed in this report, Ninyo & Moore should be contacted for additional recommendations.

9.1. Recommended Pavement Structural Sections

The recommended pavement sections are presented in the table below:

Pavement Section	Service Life (years)	AC (in) ¹	$AB (in)^2$			
COT Preferred Pavement with Geogrid	20	5	5			
Alternative Pavement Section without Geogrid	20	5.5	7			
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.						

9.2. Earthwork

The following sections provide our earthwork recommendations for this project. In general, the earthwork specifications contained in the *City of Tucson/Pima County Standard Specifications for Public Improvements, 2003 Edition (COT/PC Specifications)* are expected to apply unless specifically noted.

9.2.1. Site Preparation

Construction areas should be cleared of deleterious materials, if any are present, including abandoned utilities, construction debris, vegetation, and any other material that might interfere with the performance or progress of the work. These materials should be disposed of at a legal dumpsite. Existing features that call for relocation or removal and extend below finish grade, if present, should be removed, and the resulting excavations backfilled with engineered fill.

9.2.2. Excavations

Our evaluation of the excavation characteristics of the on-site soils is based on the results of our exploratory borings, site observations, and experience with similar materials.

9.2.3. Fill Materials

Soils with PI values of 15 or less (as evaluated by ASTM D 4318) are generally suitable for use as engineered fill. Our Atterberg limits test indicated the PI values ranging between 12 and 15. Based on this test result, many of the on-site soils are suitable for re-use as engineered fill.

Engineered fill should not include organic material, construction debris, or other nonsoil fill materials. Rock particles and clay lumps should not be larger than 4 inches in dimension. Unsuitable material should be disposed of off-site or in non-structural areas.

9.2.4. Grading and Subgrade Preparation

In general, grading operations should be performed in accordance with Section 205 of the COT/PC Specifications.

Due to potential conflicts with underground utilities, we recommend that the subgrade be improved by the application of Geogrid (Tensar Geogrid TX5 or equivalent). Geogrid should be placed in accordance with the manufacturer's instructions.

Alternatively, if Geogrid is not applied we recommend new pavements be supported on 6 inches of subgrade that is compacted by appropriate mechanical methods to a relative compaction of 95 percent as evaluated by ASTM D 698 at a moisture content generally near optimum. The thickness of the improvement zone should be measured from the bottom of the AB layer.

In areas where excessive moisture is encountered so that the above compaction cannot be achieved and/or the subgrade surface is unstable and yielding (pumping) under the roller wheels, subgrade soils should be scarified to a depth of 12 inches, aerated, and recompacted as specified above. Alternatively, subgrade soils in problem areas should be and replaced with engineered fill to a depth of 12 inches below the bottom of the AB.

9.3. Pavement Design Summary

The following sections present our design assumptions and recommendations for the new flexible pavement section of Escalante Road between Calle Polar and Kolb Road, as this roadway is scheduled for full-depth pavement reconstruction.

The pavement section was developed using the Active Practices Guidelines issued by the COT Department of Transportation (Guidelines) and the Arizona Department of Transportation (ADOT) Preliminary Engineering and Design Manual (PEDM). We assumed that the subgrade will be improved by the application of Geogrid or overexcavation, as outlined in Section 9.2.4 of this report. The new pavement sections are designed for a 20-year service life.

9.3.1. Traffic

The future traffic numbers used in this report are based on traffic counts provided by Kimley-Horn and Associates, Inc. (KHA), and later communication with the KHA. This information is presented in Appendix D. Based on the above information, and using the procedures outlined in the Guidelines and PEDM, the design number of equivalent single axle loads (ESALs) for the design lane during the 20-year design period was calculated as approximately 4,358,830.

9.3.2. R-Value and Resilient Modulus

The analysis for the design R-value for the pavement section has been performed based on procedures detailed in the Guidelines and the PEDM, using correlated R-values. The correlated R-values were derived from the PI and percent passing No. 200 Sieve test results. A summary of the R-values for this project is presented in Table 1 below:

Location	Sample Depth (ft)	Correlated R-Value
B-2	1.5-3.0	39
B-4	1.5-3.0	36

 Table 1 – R-value Summary

In the interest of conservatism, we recommend that an R-value of 30 be used for pavement design for this project.

If the project needs fill from an off-site source, we recommend the soils used for subgrade support should have an R-value of 30 or more. If during construction, the subgrade is found to vary from the expected soil conditions, we should be contacted so we may re-evaluate our recommended R-values. Based on the above design R-values, the design subgrade resilient modulus (M_R) value of 13,009 pounds per square inch (psi) was calculated in accordance with the Guidelines.

9.3.3. Statistical Parameters

A standard deviation of 0.40 was used for design of the flexible pavement in accordance with the Guidelines. The level of reliability and standard normal deviation (Z_R) values were selected in accordance with the Guidelines for the arterial functional classification. Their respective values are presented in the table below:

 Table 2 – Summary of Statistical Parameters

Roadway	Functional Classification	Standard Deviation	Level of Reliability	Standard Normal Deviation
Escalante Road between Calle Polar and Kolb Road	Arterial	0.40	95 %	-1.645

9.3.4. Serviceability Index

Initial and terminal serviceability indices were selected for the pavement design of the roadways in accordance with the Guidelines. A summary of the serviceability indices for each roadway is provided in the table below:

		v	č	
Roadway	Functional Classification	Functional ClassificationInitial Serviceability Index		Change in Serviceability
Escalante Road between Calle Polar and Kolb Road	Arterial	4.5	2.5	2.0

Table 3 –	Summary	of Serviceability	Parameters
Iunice	Summer y	of our viccuonity	I ul ullicici b

9.3.5. Layer Coefficients

The following structural coefficients were used for the pavement structure in accordance with the Guidelines:

- AC: 0.44.
- AB: 0.14.

A drainage coefficient of 1.25 was used for the AB coefficient as recommended in the Guidelines.

As mentioned in Section 4 above, due to conflicts with existing shallow utilities, it is recommended that the subgrade be improved using Geogrid (Tensar Geogrid TX5 or equivalent). In this case the AB layer coefficient is 0.286.

9.3.6. Asphalt Pavement Section Recommendations

The structural number (SN) was calculated based on the parameters described above. The table below presents the calculated SN value and the recommended structural pavement sections. The AC thickness meets the COT requirements. Supporting documentation of the pavement optimization design using Geogrid is presented in Appendix E:

Roadway	SN	$AC (in)^1$	$AB(in)^2$				
COT Preferred Pavement with Geogrid	3.99	5	5				
Alternative Pavement without Geogrid	3.58	7					
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.							

 Table 4 – Structural Pavement Sections for 20-Year Design Life

The above pavement structural section has been designed with the assumption that the subgrade is prepared by as recommended in Section 9.2.4.

10. SITE DRAINAGE

Surface drainage should be provided to divert water away from paved surfaces. Surface water should also not be permitted to pond on or below pavement areas. Positive drainage for this project is defined as a slope of 2 percent or more for a distance of 5 feet or more away from the pavements. To deter accumulation of water below the new pavement sections, the bottom of the overexcavated zone below the new pavement should be sloped toward the edges of the roadway.

11. PRE-CONSTRUCTION CONFERENCE

We recommend that a pre-construction conference be held. Representatives of the owner, the civil engineer, Ninyo & Moore, and the contractor should be in attendance to discuss the project plans and schedule. Our office should be notified if the project description included herein is incorrect or if the project characteristics are significantly changed.

12. CONSTRUCTION OBSERVATION AND TESTING

During construction operations, we recommend that Ninyo & Moore perform observation and testing services for the project. These services should be performed to evaluate exposed subgrade conditions, including the extent and depth of overexcavation, to evaluate the suitability of

proposed borrow materials for use as engineered fill and to observe placement and test compaction of fill soils. Qualified subcontractors utilizing appropriate techniques and construction materials should perform construction of the proposed improvements.

13. LIMITATIONS

The field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation will be performed upon request. Please also note that our evaluation was limited to assessment of the geotechnical aspects of the project, and did not include evaluation of structural issues, environmental concerns, or the presence of hazardous materials.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document.

This report is intended for design purposes only. It does not provide sufficient data to prepare an accurate bid by contractors. It is suggested that the bidders and their geotechnical consultant perform an independent evaluation of the subsurface conditions in the project areas. The independent evaluations may include, but not be limited to, review of other geotechnical reports prepared for the adjacent areas, site reconnaissance, and additional exploration and laboratory testing.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are encountered, our office should be notified and additional recommendations, if warranted, will be provided upon request. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

14. **REFERENCES**

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards.

- Arizona Department of Transportation (ADOT), 1989, Preliminary Engineering and Design Manual, Materials Section, 3rd Edition: dated March.
- City of Tucson, Arizona, Department of Transportation, Engineering Division, 1987, Active Practices Guidelines: dated June 1.

Ninyo & Moore, In-house proprietary information.

APPENDIX A

BORING LOGS

Field Procedure for the Collection of Relatively Undisturbed Samples

Relatively undisturbed soil samples were obtained in the field using the following methods.

The Modified Split-Barrel Drive Sampler

The sampler, with an external diameter of 3.0 inches, was lined with 1-inch long, thin brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a hammer or the Kelly bar of the drill rig in general accordance with ASTM D 3550. The driving weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer or bar, and the number of blows per foot of driving are presented on the boring logs as an index to the relative resistance of the materials sampled. The samples were removed from the sample barrel in the brass rings, sealed, and transported to the laboratory for testing.

		SSIFICATION	СН	GRAIN SIZE										
DD				SECON	DARY DIVISIONS		DESC		SIEVE	GRAIN	APPROXIMATE			
				OUP SYMBOL	GROUP NAME				SIZE	SIZE	SIZE			
		CLEAN GRAVEL		GW	well-graded GRAVEL		Во	ulders	> 12"	> 12"	Larger than			
		less than 5% fines		GP	poorly graded GRAVEL						Dasketball-sized			
	GRAVEI			GW-GM	well-graded GRAVEL with silt		Co	bbles	3 - 12"	3 - 12"	Fist-sized to basketball-sized			
	more than	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt									
	coarse	CLASSIFICATIONS 5% to 12% fines		GW-GC	well-graded GRAVEL with clay			Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized			
	retained on			GP-GC	poorly graded GRAVEL with clay		Gravel				Pag sized to			
	INO. 4 SIEVE	GRAVEL with		GM	silty GRAVEL			Fine	#4 - 3/4"	0.19 - 0.75"	thumb-sized			
COARSE- GRAINED		FINES more than		GC	clayey GRAVEL			0	#40 #4		Rock-salt-sized to			
SOILS		12% fines		GC-GM	silty, clayey GRAVEL			Coarse	#10 - #4	0.079 - 0.19"	pea-sized			
50% retained		CLEAN SAND		SW	well-graded SAND		Sand	Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to			
on No. 200 sieve		less than 5% fines	less than 5% fines		SP	poorly graded SAND						rock-salt-sized		
		SAND with DUAL CLASSIFICATIONS 5% to 12% fines		SW-SM	well-graded SAND with silt			Fine	#200 - #40	0.0029 -	Flour-sized to			
	SAND 50% or more		SAND with DUAL CLASSIFICATIONS 5% to 12% fines	SAND with DUAL	SAND with DUAL		SP-SM	poorly graded SAND with silt					0.017	3ugar-3izeu
	of coarse fraction				SW-SC	well-graded SAND with clay		F	nes	Passing #200	< 0.0029"	Flour-sized and smaller		
	passes No. 4 sieve			SP-SC	poorly graded SAND with clay									
		SAND with EINES		SM	silty SAND		PLASTICITY CHART							
		more than		SC	clayey SAND									
		12% intes		SC-SM	silty, clayey SAND		7	D						
				CL	lean CLAY		° 6							
	SILT and	INORGANIC		ML	SILT		(Id) 5							
	CLAY liquid limit			CL-ML	silty CLAY			D		CH or OF				
FINE-	less than 50%	OBCANIC		OL (PI > 4)	organic CLAY		≚ 3	p						
SOILS		ORGANIC		OL (PI < 4)	organic SILT			D	CL or (WH or OH			
50% or				СН	fat CLAY		I SV 1							
No. 200 sieve	SILT and CLAY	INORGANIC		MH	elastic SILT		The second secon							
	liquid limit 50% or more	OPCANIC		OH (plots on or above "A"-line)	organic CLAY		0 10 20 30 40 50 60 70 80 90 1			80 90 100				
		URGANIC		OH (plots below "A"-line)	organic SILT			LIQUID LIMIT (LL), %						
	Highly C	Organic Soils		PT	Peat									

APPARENT DENSITY - COARSE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
DENSITY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Loose	≤4	≤ 8	<u>≤</u> 3	≤ 5		
Loose	5 - 10 9 - 21		4 - 7	6 - 14		
Medium Dense	11 - 30	22 - 63	8 - 20	15 - 42		
Dense	31 - 50	64 - 105	21 - 33	43 - 70		
Very Dense	> 50 > 105		> 33	> 70		

Ninyo & Moore

CONSISTENCY - FINE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
CONSIS- TENCY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Soft	< 2	< 3	< 1	< 2		
Soft	2 - 4	3 - 5	1 - 3	2 - 3		
Firm	5 - 8	6 - 10	4 - 5	4 - 6		
Stiff	9 - 15	11 - 20	6 - 10	7 - 13		
Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26		
Hard	> 30	> 39	> 20	> 26		

USCS METHOD OF SOIL CLASSIFICATION

Explanation of USCS Method of Soil Classification DATE

DEPTH (feet)	Bulk SAMPLES	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BOR	ING LOG EX	PLANATION S	SHEET
0							Bulk sample.			
							Modified split-barrel	drive sampler. lified split-barrel dri	ve samnler	
									ve sampler.	
							Sample retained by ot	hers.		
							Standard Penetration	Test (SPT).		
5 -	\Box						No recovery with a SI	PT.		
		XX/XX					Shelby tube sample. I	Distance pushed in in	nches/length of sample	recovered in inches.
							No recovery with She	lby tube sampler.		
							Continuous Push Sam	ple.		
			Ş				Seepage.			
10-			ļi. ₩ļi				Groundwater encount Groundwater measure	ered during drilling.		
						-				
						SM	MAJOR MATERIAL Solid line denotes uni	<u>TYPE (SOIL)</u> : t change.		
						CL	Dashed line denotes n	naterial change.		
							Attitudes: Strike/Dip			
							c: Contact			
15 -							J: Joint f: Fracture			
							F: Fault			
							s: Shear			
	$\left \right $						bss: Basal Slide Surfa	ce		
							sz: Shear Zone			
							sbs: Shear Bedding Su	ırface		
							The total depth line is	a solid line that is d	rawn at the bottom of	the boring.
20							<u> </u>		BORINGLOG	<u> </u>
			\overline{n}		&	AAn	nre		Explanation of Boring Log Sy	mbols
			Э					PROJECT NO.	DATE	FIGURE

IPLES			F)			DATE DRILLED9/28/15BORING NOB-1	
eet) SAN	Ю	(%)	r (PC	MBOL	ATION		GROUND ELEVATION2,701' ± (MSL) SHEET OF
TH (fe	VS/FC	TURE	NSIT		MBO	MBO	S.C.S
DEP 3ulk	BLOV	.SION	Y DEI	۶	LASS	DRIVE WEIGHT140 lbs. (Automatic) DROP30"	
			DR		O	SAMPLED BY <u>NAG</u> LOGGED BY <u>NAG</u> REVIEWED BY <u>DT</u>	
0						DESCRIPTION/INTERPRETATION ASPHALT CONCRETE: Approximately 3 inches thick	
					SC	<u>ALLUVIUM</u> : <u>ALLUVIUM</u> : <u>Baddish brown</u> maist madium dansa alayay SAND: traca graval	
						Reduisit brown, moist, medium dense, clayey SAND, trace graver.	
	18						
						Total Depth – 3 feet	
						Groundwater not encountered during drilling.	
						Backfilled and asphalt concrete patched on 9/28/15 shortly after completion of drilling.	
5						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher	
						level due to seasonal variations in precipitation and several other factors as discussed in the report.	
						The ground elevation shown above is an estimation only. It is based on our interpretations	
						of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents	
						not sufficiently accurate for preparing construction olds and design documents.	
10							
20							
	• / 2			<u> </u>		BORING LOG	
	V/	ΠЦ	ĮŪ «	۶£	M	TUCSON PAVEMENT RECONSTRUCTIONS PROGRAM - ESCALANTE ROAD, CALLE POLAR TO KOLB ROAD, TUCSON, ARIZONA	
	V					PROJECTINO. DATE FIGURE 604817002 12/15 A-1	

IPLES			F)		_	DATE DRILLED	
eet) SAN	DOT	(%) Ξ	Y (PC	۲	ATION.	Y MBOL SIFICATION S.C.S.	GROUND ELEVATION 2,710' ± (MSL) SHEET 1 OF 1
TH (f	NS/F0	TURE	NSIT	MBC	YMBC		METHOD OF DRILLING CME-45, 8" Hollow Stem Auger (Southlands)
DEF Bulk Driven	BLO	MOIS	kY DE	S	SLASS	DRIVE WEIGHT 140 lbs. (Automatic) DROP 30"	
			DF		0	SAMPLED BY NAG LOGGED BY NAG REVIEWED BY DT	
0						ASPHALT CONCRETE: Approximately 3 inches thick.	
	25				50	<u>ALLUVIUM</u> : Reddish brown, moist, medium dense, clayey SAND; few gravel.	
						Total Depth = 3 feet. Groundwater not encountered during drilling.	
						Backfilled and asphalt concrete patched on 9/28/15 shortly after completion of drilling.	
						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.	
						The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.	
10							
15							
	•					BORING LOG	
	MÌ	<u>n</u>	10	Sz		TUCSON PAVEMENT RECONSTRUCTIONS PROGRAM - ESCALANTE ROAD, CALLE POLAR TO KOLB ROAD, TUCSON, ARIZONA	
	V	J			V •	PROJECT NO. DATE FIGURE 604817002 12/15 A-2	

IPLES			F)		_	DATE DRILLED9/28/15BORING NOB-3			
eet) SAN	ТОС	(%)	Y (PC	۲	ATION.	GROUND ELEVATION 2,717' ± (MSL) SHEET 1 OF 1			
TH (f	NS/F0	TURE	NSIT	/ MBC	MBC	YMBC	SIFIC, S.C.S	SIFIC/	METHOD OF DRILLING CME-45, 8" Hollow Stem Auger (Southlands)
DEF Bulk	BLO	MOIS	۲ DE	S	CLASS	DRIVE WEIGHT 140 lbs. (Automatic) DROP 30"			
			D			SAMPLED BY NAG LOGGED BY NAG REVIEWED BY DT			
0						ASPHALT CONCRETE: Approximately 3 inches thick.			
	24				50	ALLUVIUM: Reddish brown, moist, medium dense, clayey SAND; trace gravel.			
						Total Depth = 3 feet. Groundwater not encountered during drilling.			
						Backfilled and asphalt concrete patched on 9/28/15 shortly after completion of drilling.			
						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.			
						The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.			
10									
15									
	•	<u> </u>				BORING LOG			
	Vľ	ny	[]	Sz	MO	TUCSON PAVEMENT RECONSTRUCTIONS PROGRAM - ESCALANTE ROAD, CALLE POLAR TO KOLB ROAD, TUCSON, ARIZONA			
	V				V -	PROJECT NO. DATE FIGURE 604817002 12/15 A-3			

LES LES		DATE DRILLED 9/28/15 BORING NO. B-4
set) SAN DOT	, TION	GROUND ELEVATION 2,725' ± (MSL) SHEET 1 OF 1
VS/FC	'MBO	METHOD OF DRILLING CME-45, 8" Hollow Stem Auger (Southlands)
DEP BLOV MOIS	SY LASS	DRIVE WEIGHT140 lbs. (Automatic) DROP30"
	0	SAMPLED BY NAG LOGGED BY NAG REVIEWED BY
0		DESCRIPTION/INTERPRETATION
	SC	ALLUVIUM: Reddick brown moist medium denge glavay SAND
		Reduisit brown, moist, meanum dense, clayey SAND.
36		
		Total Depth - 3 feet
		Groundwater not encountered during drilling.
		Backfilled and asphalt concrete patched on 9/28/15 shortly after completion of drilling.
5		Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher
		level due to seasonal variations in precipitation and several other factors as discussed in the report.
		The ground elevation shown above is an estimation only. It is based on our interpretations
		of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction hids and design documents
		not sufficiently accurate for preparing construction bids and design documents.
10		
		BORING LOG
NINYO	[®] M	TUCSON PAVEMENT RECONSTRUCTIONS PROGRAM - ESCALANTE ROAD, CALLE POLAR TO KOLB ROAD, TUCSON, ARIZONA
	▼ _	PROJECTINO. DATE FIGURE 604817002 12/15 A-4

APPENDIX B

LABORATORY TESTING

Classification

Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings in Appendix A.

Gradation Analysis

One gradation analysis test was performed on a selected representative soil sample in general accordance with ASTM D 422. The grain-size distribution curves are shown in Figures B-1 and B-2. These test results were utilized in evaluating the soil classification in accordance with the USCS.

Atterberg Limits

Tests were performed on a selected representative fine-grained soil sample to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. These test results were utilized to evaluate the soil classification in accordance with the USCS. The test results and classifications are shown on Figure B-3.

SYMBOL	LOCATION	DEPTH (FT)	LIQUID LIMIT, LL	PLASTIC LIMIT, PL	PLASTICITY INDEX, PI	USCS CLASSIFICATION (Fraction Finer Than No. 40 Sieve)	USCS (Entire Sample)
•	B-2	1.5-3.0	29	14	15	CL	SC
-	B-4	1.5-3.0	22	10	12	CL	SC
	60		<u>т г</u>		1		

PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 4318

Ninyo	Moore	ATTERBERG LIMITS TEST RESULTS	FIGURE
PROJECT NO.	DATE	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ESCALANTE ROAD	B_ 2
604817001	12/15	TUCSON, ARIZONA	D-3

APPENDIX C

PAVEMENT AND CORE SUMMARY

TUCSON PAVEMENT REHABILITATION PROGRAM - FY 16

No.	Location	Approximate AC thickness (in)*	Recovered AC Thickness (in)	Core Description	Pavement Condition
B-1	Westbound, 950 feet west of Mann Avenue	3	2.5	One lift with chip seal, numerous voids.	Extensive alligator, transverse and block cracking, areas of flushing, patches, some cracks sealed.
B-2	Eastbound, 80 feet west of Mann Avenue	3	2.5	One lift, numerous voids, core broke into pieces.	Extensive alligator, transverse and block cracking, areas of flushing, patches, some cracks sealed.
B-3	Westbound, 630 feet east of Mann Avenue	3	2.5	One lift with chip seal, numerous voids.	Extensive alligator, transverse and block cracking, areas of flushing, patches, some cracks sealed.
B-4	Eastbound, 450 feet east of Jessica Avenue	2.75	2.75	One lift with chip seal, numerous voids, core broke into pieces.	Extensive alligator, transverse and block cracking, areas of flushing, patches, some cracks sealed.

ESCALANTE ROAD (CALLE POLAR TO KOLB ROAD) - PAVEMENT AND CORE SUMMARY

Notes:

* Measured in the boring

APPENDIX D

TRAFFIC DATA

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-001 Station ID: Wed 10/14/2015 Calle Polar btwn. Nicaragua Dr. & Barrow St. 32.179560, -110.853668 Latitude: 0' 0.000 Undefined

Northbound												La		Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	TIrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/14/15	0	18	3	0	0	0	0	0	0	0	0	0	0	21
01:00	0	5	2	0	0	0	0	0	0	0	0	0	0	7
02:00	0	11	1	0	0	0	0	0	0	0	0	0	0	12
03:00	0	24	6	0	0	0	0	0	0	0	0	0	0	30
04:00	0	60	16	0	1	0	0	0	0	0	0	0	0	77
05:00	1	208	82	1	4	0	0	0	0	0	0	0	0	296
06:00	2	352	122	2	1	0	0	2	2	0	0	0	0	483
07:00	3	499	95	1	3	0	0	1	1	0	2	0	0	605
08:00	4	330	53	0	1	1	0	1	0	0	0	0	1	391
09:00	1	250	61	0	1	0	0	1	2	0	0	0	0	316
10:00	1	192	60	3	2	0	0	0	0	0	0	1	0	259
11:00	0	232	55	0	4	0	0	2	1	1	0	1	0	296
12 PM	0	207	47	3	3	2	0	0	0	1	0	0	1	264
13:00	0	212	51	2	4	3	0	2	1	2	1	1	1	280
14:00	1	209	49	1	1	1	0	1	1	0	2	0	2	268
15:00	1	191	43	7	0	1	0	0	0	1	1	0	1	246
16:00	1	182	39	3	0	0	0	1	2	0	1	0	0	229
17:00	1	199	34	1	6	1	0	0	0	0	0	1	1	244
18:00	2	162	31	4	0	4	0	0	0	0	0	0	0	203
19:00	0	114	20	1	3	1	0	0	1	0	0	0	0	140
20:00	0	60	13	1	0	0	0	0	0	0	0	0	0	74
21:00	0	47	5	2	1	0	0	0	0	0	0	0	0	55
22:00	0	47	2	0	0	0	0	0	0	0	0	0	0	49
23:00	0	22	6	0	0	0	0	0	0	0	0	0	0	28
Day	18	3833	896	32	35	1/	0	11	11	5	7	1	7	1873
Total	10	5055	030	52	55	14	0			5	,	-	,	4075
Percent	0.4%	78.7%	18.4%	0.7%	0.7%	0.3%	0.0%	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%	
AM Peak	08:00	07:00	06:00	10:00	05:00	08:00		06:00	06:00	11:00	07:00	10:00	08:00	07:00
Vol.	4	499	122	3	4	1		2	2	1	2	1	1	605
PM Peak	18:00	13:00	13:00	15:00	17:00	18:00		13:00	16:00	13:00	14:00	13:00	14:00	13:00
Vol.	2	212	51	7	6	4		2	2	2	2	1	2	280
- ·														
Grand	18	3833	896	32	35	14	0	11	11	5	7	4	7	4873
Iotal	0.40/	70 70	10 10	0.70/	0.70/	0.00/	0.001	0.001	0.001	0.401	0.40/	0.40/	0.40/	-
Percent	0.4%	18.1%	18.4%	0.7%	0.7%	0.3%	0.0%	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-001 Station ID: Wed 10/14/2015 Calle Polar btwn. Nicaragua Dr. & Barrow St. 32.179560, -110.853668 Latitude: 0' 0.000 Undefined

Southbound												La		Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/14/15	0	31	11	0	0	0	0	0	0	0	0	0	0	42
01:00	0	18	1	0	0	0	0	0	0	0	0	0	0	19
02:00	0	18	3	0	0	0	0	0	0	0	0	0	0	21
03:00	1	14	3	0	0	0	0	0	0	0	0	0	0	18
04:00	0	21	7	0	0	0	0	0	0	0	0	0	0	28
05:00	0	52	18	1	1	0	1	0	0	0	0	0	0	73
06:00	1	95	33	3	3	0	0	0	2	0	0	1	2	140
07:00	0	145	43	4	0	1	1	1	0	0	0	0	1	196
08:00	1	134	27	2	1	0	1	0	3	1	0	0	0	170
09:00	0	153	30	2	0	0	0	1	2	0	0	2	1	191
10:00	0	191	39	2	1	0	1	3	2	0	1	0	1	241
11:00	2	250	65	1	4	1	0	2	1	0	2	0	1	329
12 PM	0	289	64	0	4	0	1	0	2	0	1	0	0	361
13:00	1	283	66	2	2	0	0	0	1	0	2	1	0	358
14:00	1	373	91	4	6	1	0	3	1	0	1	0	0	481
15:00	0	454	143	3	5	0	1	4	5	1	2	1	2	621
16:00	2	580	156	4	2	0	1	2	1	0	4	1	2	755
17:00	0	535	114	3	3	0	1	4	0	1	5	0	1	667
18:00	1	370	60	2	0	1	1	1	0	1	2	2	1	442
19:00	0	272	55	0	2	0	1	0	0	2	0	0	0	332
20:00	0	253	57	0	0	0	0	1	0	0	0	1	1	313
21:00	0	168	27	0	0	1	0	0	0	0	0	0	0	196
22:00	0	102	26	0	0	0	0	0	0	0	0	0	0	128
23:00	0	65	10	0	0	0	0	0	0	0	0	0	0	75
Day	10	4866	11/0	33	34	5	10	22	20	6	20	0	13	6107
Total	10	4800	1149		54	5	10	22	20	0	20	9	15	0197
Percent	0.2%	78.5%	18.5%	0.5%	0.5%	0.1%	0.2%	0.4%	0.3%	0.1%	0.3%	0.1%	0.2%	
AM Peak	11:00	11:00	11:00	07:00	11:00	07:00	05:00	10:00	08:00	08:00	11:00	09:00	06:00	11:00
Vol.	2	250	65	4	4	1	1	3	3	1	2	2	2	329
PM Peak	16:00	16:00	16:00	14:00	14:00	14:00	12:00	15:00	15:00	19:00	17:00	18:00	15:00	16:00
Vol.	2	580	156	4	6	1	1	4	5	2	5	2	2	755
.														
Grand	10	4866	1149	33	34	5	10	22	20	6	20	9	13	6197
Iotal	0.00/	70 50/	40 50/	0 50/	0 50/	0.40/	0.00/			0.401		0.40/	0.00/	
Percent	0.2%	78.5%	18.5%	0.5%	0.5%	0.1%	0.2%	0.4%	0.3%	0.1%	0.3%	0.1%	0.2%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

> Site Code: 15-1283-001 Station ID: Wed 10/14/2015 Calle Polar btwn. Nicaragua Dr. & Barrow St. 32.179560, -110.853668 Latitude: 0' 0.000 Undefined

Northbound. Southbound Cars & 2 Axle 2 Axle 3 Axle 4 Axle <5 Axle 5 Axle <6 Axle 6 Axle >6 Axle Start >6 Axle Time Bikes TIrs Lona Buses 6 Tire Sinale Sinale Double Double Double Multi Multi Multi Total 10/14/15 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12 PM 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 Dav Total Percent 0.3% 78.6% 18.5% 0.6% 0.6% 0.2% 0.1% 0.3% 0.3% 0.1% 0.2% 0.1% 0.2% AM Peak 08:00 07:00 06:00 06:00 11:00 07:00 05:00 11:00 06:00 08:00 07:00 09:00 06:00 07:00 Vol. PM Peak 16:00 16:00 16:00 15:00 17:00 18:00 12:00 14:00 15:00 13:00 16:00 13:00 15:00 16:00 Vol. Grand Total 0.3% 78.6% 18.5% 0.6% 0.6% 0.2% 0.1% 0.3% 0.3% 0.1% 0.2% 0.1% 0.2% Percent

APPENDIX E

PAVEMENT OPTIMIZATION DESIGN ANALYSIS BY TENSAR

SpectraPave4 PRO[™] Tensal Pavement Optimization Design Analysis

Design Parameters for AASHTO (1993) Equation

Reliability (%)	= 95	Initial Serviceability	= 4.5
Standard Normal Deviate	= -1.645	Terminal Serviceability	= 2.5
Standard Deviation	= 0.4	Change in Serviceability	= 2

Aggregate fill shall conform to following requirement:

D50 <= 27mm (Base course)

Unstabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
ABC	Aggregate Base Course	20	0.140	1.25

Unstabilized Pavement

Stabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
MSL	Mechanically Stabilized Base Cour	20	0.286	1.25

Stabilized Pavement

ACC1 5.00 (in) ACC1 5.50 (in) **MSL** 5.00 (in) ABC 7.00 (in) Tensar TX5 (Overlap=1.0ft) Subgrade Modulus = 13,009 (psi) Subgrade Modulus = 13,009 (psi) Structural Number = 3.645 Structural Number = 3.988 Calculated Traffic (ESALs) = 4,927,000 Calculated Traffic (ESALs) = 8,957,000 LIMITATIONS OF THE REPORT The designs, illustrations, information and other content included in this report are necessarily general and conceptual in

nature, and do not constitute engineering advice or any design intended for actual construction. Specific design recommendations can be provided as the project develops.								
Project Name Escalante West								
Company Name		Tensar						
Designer Schlessinger Date 11/30/15								
This degument was prepared using SpectroPayed DBOTM Software Version 4.6.1								

This document was prepared using SpectraPave4 PRO™ Software Version 4.6.1 Developed by Tensar International Corporation Copyright 1998 - 2014, All Rights Reserved.

Standard Asphalt Pavement - TWH Edition - 20150503

PAVEMENT EVALUATION TUCSON PAVEMENT RECONSTRUCTION PROGRAM IRVINGTON ROAD TUCSON, ARIZONA

PREPARED FOR:

Kimley-Horn & Associates, Inc. 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

PREPARED BY:

Ninyo & Moore Geotechnical and Environmental Sciences Consultants 1991 East Ajo Way, Suite 145 Tucson, Arizona 85713

> December 16, 2015 Project No. 604817002

1991 East Ajo Way, Suite 145 • Tucson, Arizona 85713 • Phone (520) 577-7600 • Fax (520) 577-7606

December 16, 2015 Project No. 604817002

Mr. Rick Solis, P.E. Kimley-Horn 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

Subject: Pavement Evaluation Tucson Pavement Reconstruction Program – Irvington Road Tucson, Arizona

Dear Mr. Solis:

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, Ninyo & Moore has performed a pavement evaluation for the above-referenced site. The attached report presents our methodology, findings, conclusions, and recommendations regarding the geotechnical conditions at the project site.

We appreciate the opportunity to be of service to you during this phase of the project.

Fred Narcaroti Principal/Tucson Office Manager

MJK/DT/FFN/tlp

Distribution: (1) Addressee (Electronic Copy)

TABLE OF CONTENTS

Page 1

1.	INTRODUCTION
2.	SCOPE OF SERVICES
3.	SITE DESCRIPTION
4.	PROPOSED CONSTRUCTION
5	EXISTING PAVEMENT CONDITION 3
<i>6</i> .	FIELD EXPLORATION AND LABORATORY TESTING
7.	SUBSURFACE CONDITIONS
8.	CONCLUSIONS
9.	RECOMMENDATIONS69.1. Recommended Pavement Treatment69.1.1. Mill and Overlay69.1.2. Full-Depth Reconstruction79.2. Earthwork (Where Full-Depth Reconstruction is Needed)79.2.1. Site Preparation79.2.2. Excavations89.2.3. Fill Materials89.2.4. Grading and Subgrade Preparation89.3. Pavement Design Summary (Full-Depth Reconstruction)99.3.1. Traffic99.3.2. R-Value and Resilient Modulus99.3.3. Statistical Parameters109.3.4. Serviceability Index119.3.5. Layer Coefficients119.3.6. Asphalt Pavement Section Recommendations11
10.	SITE DRAINAGE
11.	PRE-CONSTRUCTION CONFERENCE
12.	CONSTRUCTION OBSERVATION AND TESTING
13.	LIMITATIONS
14.	REFERENCES

<u>Tables</u>

Table 1 – R-value Summary	10
Table 2 – Summary of Statistical Parameters	10
Table 3 – Summary of Serviceability Parameters	11
Table 4 – Structural Pavement Sections for 20-Year Design Life	12

Figures

Figure 1 – Site Location Figure 2 – Boring Locations

Appendices

Appendix A – Boring Logs

Appendix B – Laboratory Testing

Appendix C – Pavement and Core Summary

Appendix D – Traffic Data

Appendix E – Pavement Optimization Design Analysis by Tensar

1. INTRODUCTION

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, we have performed a pavement evaluation for the Irvington Road Pavement Reconstruction project between Interstate 19 (I-19) ramp (east) and 6th Avenue, in Tucson, Arizona. The purpose of our evaluation was to assess the pavement and subgrade conditions along the project alignment in order to provide geotechnical recommendations for design and construction. This report presents the results of our evaluation, conclusions, and recommendations regarding the proposed construction.

2. SCOPE OF SERVICES

The scope of our services generally included:

- Preparing a field testing plan and associated permit application for submittal to the City of Tucson (COT).
- Conducting a visual reconnaissance of the pavement along the alignment and marking out the boring locations.
- Notifying Arizona811 of our boring locations prior to conducting the field work.
- Arranging for traffic control measures to conduct the field work.
- Coring the existing asphaltic concrete (AC) pavement at five locations along the project alignment.
- Exploring the subsurface soils within the project limits by drilling, logging, and sampling five exploratory soil borings to approximate depths of 3 feet below ground surface (bgs). The boring logs are presented in Appendix A.
- Performing laboratory tests on selected samples collected from our borings to evaluate gradation and Atterberg limits. The results of the laboratory tests are included in Appendix B.
- Preparing this report presenting our findings, conclusions and recommendations regarding the proposed reconstruction.

Our scope of services did not include environmental consulting services such as hazardous waste sampling or analytical testing at the site. A detailed scope of services and estimated fee for such services can be provided upon request.

3. SITE DESCRIPTION

The project site is located in Sections 35 and 36 of Townships 14 South, Range 14 East relative to the Gila and Salt River Base Line and Meridian. The project alignment extends along Irvington Road between I-19 ramp (east) and 6th Avenue, in Tucson, Arizona (Figure 1).

At the time of our evaluation commercial developments existed to the north and south of the project alignment. The roadway section consisted of two travel lanes in each direction, a center lane, concrete sidewalks, and concrete curb and gutter.

4. **PROPOSED CONSTRUCTION**

The COT has identified several segments of the existing street network for reconstruction and/or rehabilitation in fiscal year (FY) 2016 under Bid Package 2. The scope of this report includes Irvington Road between I-19 ramp (east) and 6th Avenue. The project alignment is approximately one mile long.

We understand that the COT anticipates pavement rehabilitation consisting of milling and overlaying the existing pavement along the project alignment. The existing AC will be milled to a depth of 3 inches. The cracks on the AC surface exposed after milling will be sealed and ¹/₂-inch thick Asphalt Rubber Stress Absorbing Membrane (SAME) will be placed. A new 2 ¹/₂-inch thick AC overlay of will be placed on top of SAME.

It is also our understanding that the COT intends to use Tucson Department of Transportation (TDOT) AC Mix No. 2 PG 76-22TR+ for the overlay.

In the event that full-depth pavement repairs are needed in areas of severe distress, we have also provided in this report a new pavement structural section, which assumes the use of TDOT AC Mix No. 2 PG 76-22TR+ for the surface layers and TDOT AC Mix No. 1 PG 70-10 for the

underlying layer. Due to conflicts with shallow utility lines, subgrade improvement by overexcavation will not be performed and the new pavement section will be constructed on subgrade improved with Geogrid (Tensar Geogrid TX7 or equivalent).

The scope of this exploration included evaluation of the existing pavement section and subgrade soils in order to provide recommendations for pavement rehabilitation and/or reconstruction in accordance with the current COT practice.

5. EXISTING PAVEMENT CONDITION

On September 30, 2015, Ninyo & Moore conducted a limited visual evaluation of the pavement surface along the project alignment. Based on our field observations, the AC pavement exhibited signs of distress in many locations along the project alignment primarily consisting of extensive block, longitudinal, transverse and irregular cracking with considerable spalling, and potholes. Alligator cracking in both wheel tacks was observed at some locations near the east end of the project alignment. Some of the cracks exhibited evidence of past sealing but they have re-opened since then. The crack widths generally varied between hairline (less than 1/8-inch) and over one inch. Asphaltic concrete patches were observed at some locations which were probably associated with past maintenance efforts (pothole and crack repairs) or with underground utility work.

In our opinion, the distress observed along the project alignment indicates structural failure and is related to a combination of pavement age, subgrade condition, traffic, and environmental impacts.

6. FIELD EXPLORATION AND LABORATORY TESTING

On September 30, 2015, Ninyo & Moore conducted a geotechnical exploration in order to evaluate the subsurface conditions and collect AC cores and soil samples for laboratory testing. Our evaluation consisted of coring the existing AC pavement, drilling, logging, and sampling five small-diameter borings, denoted as B-1 through B-5, utilizing a CME-75 truck-mounted drill

rig equipped with hollow-stem augers. The borings extended to depths of approximately 3 feet bgs. The approximate locations of the borings are depicted on Figure 2.

Ninyo & Moore personnel logged the borings in general accordance with the Unified Soil Classification System (USCS) and American Society for Testing and Materials (ASTM) D 2488 by observing cuttings and drive samples. Collected ring samples were trimmed in the field, wrapped in plastic bags, and placed in cylindrical plastic containers to retain in-place moisture conditions.

The soil samples collected from our drilling activities were transported to the Ninyo & Moore laboratory in Tucson, Arizona for geotechnical laboratory testing. The tests included gradation and Atterberg limits. A description of each laboratory test method and the test results are presented in Appendix B.

7. SUBSURFACE CONDITIONS

Our knowledge of the subsurface conditions at the project site is based on our field exploration, laboratory testing, and general experience in the area. More detailed stratigraphic information is presented on the boring logs in Appendix A, attached to this report. The boring logs contain our field and laboratory test results, as well as our interpretation of conditions believed to exist between actual samples retrieved. Therefore, these boring logs contain both factual and interpretive information. Lines delineating subsurface strata on the boring logs are intended to group soils having similar engineering properties and characteristics. They should be considered approximate as the actual transition between soil types (strata) may be gradual. A key to the soil symbols and terms used on the boring logs is provided in Appendix A.

7.1. Asphaltic Concrete

Asphaltic concrete pavement was encountered at the surface of each of our borings. The AC thickness varied between approximately 8 and 9 ¹/₂ inches, in our borings. It should be noted that the thickness of the AC pavement between the sampling locations may vary and could

be different from that encountered at our sampling locations. Detailed core descriptions are presented in Appendix C.

Aggregate base varied between approximately 2 and 12 inches in our borings. It is possible the AB material blended with the native subgrade soils, such that delineation of the AB/subgrade interface was not easily interpreted.

7.2. Alluvium

Native alluvial soils were encountered below the pavement sections described above, and extended to the boring termination depths. The alluvium generally consisted of loose to dense, clayey and silty sands with varying amounts of gravel and scattered caliche cementation.

8. CONCLUSIONS

Based on the results of our visual and subsurface evaluations, laboratory testing, and data analysis, geotechnical considerations include the following:

- The on-site soils generally include clayey and silty sands, with plasticity index (PI) values ranging between 0 (non-plastic) and 17. Some soils may be sensitive to moisture content fluctuations and may be difficult to compact especially at higher moisture contents. The contractor should be aware of this condition.
- Due to the relatively widely spaced nature of our borings, soil conditions may differ from what was observed during our field exploration.
- The pavement exhibits significant distress in many locations along the project alignment consisting mainly of block, longitudinal, transverse and irregular cracking with considerable spalling, and potholes. Alligator cracking in both wheel tacks was observed at some locations near the east end of the project alignment.
- Mill and overlay pavement rehabilitation is considered for this project as proposed by the COT.

9. **RECOMMENDATIONS**

The following sections present our geotechnical recommendations for the project. If the proposed construction is changed from that discussed in this report, Ninyo & Moore should be contacted for additional recommendations.

9.1. Recommended Pavement Treatment

The recommended pavement treatments are briefly summarized below.

9.1.1. Mill and Overlay

Mill and overlay rehabilitation is recommended for the project alignment. It is anticipated that this treatment will include:

- Milling 3 inches of the existing AC.
- Sealing the cracks at the surface.
- Placing a ¹/₂-inch thick SAME membrane.
- Placing an overlay of a new AC that is 2 ¹/₂ -inches thick using TCOT Mix No. 2 PG 76-22TR+.

It is important that after milling and prior to the overlay, the pavement surface be cleaned of any debris using mechanical sweepers or similar equipment and carefully inspected for distress. Cracks wider than 1/8-inch should be sealed with an approved sealant and cracks wider than 1½-inches should be sealed with AC mix No. 3 (per Section 406 of the COT/PC Specifications). In areas where following the milling operation structural failure or disintegration is observed on the exposed AC surface, the affected areas should be removed and replaced with a new pavement section, as defined in Section 9, above. Such areas are typically characterized by extensively cracked, disintegrated, yielding and/or otherwise unstable AC.

Based on the future traffic data available and our experience with similar pavement rehabilitation projects within the Tucson Metro Area, we estimate that the service life of the milled and overlaid pavement will be on the order of 10 to 15 years. This service life

includes the beneficial effect of SAME, which is anticipated to defer propagation of the cracks to the pavement surface.

9.1.2. Full-Depth Reconstruction

In the event that full-depth reconstruction is needed in areas of severe pavement distress, the recommended pavement sections are presented in the table below:

Pavement Section	Service Life (years)	AC (in) ¹	$AB (in)^2$					
COT Preferred Pavement with Geogrid	20	6	5					
Alternative Pavement Section without Geogrid	20	7	8					
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.								

9.2. Earthwork (Where Full-Depth Reconstruction is Needed)

The following sections provide our earthwork recommendations for areas where full-depth pavement reconstruction is needed due to pavement distress. In general, the earthwork specifications contained in the *City of Tucson/Pima County Standard Specifications for Public Improvements, 2003 Edition (COT/PC Specifications)* are expected to apply unless specifically noted.

9.2.1. Site Preparation

Construction areas should be cleared of deleterious materials, if any are present, including abandoned utilities, construction debris, vegetation, and any other material that might interfere with the performance or progress of the work. These materials should be disposed of at a legal dumpsite. Existing features that call for relocation or removal and extend below finish grade, if present, should be removed, and the resulting excavations backfilled with engineered fill.

9.2.2. Excavations

Our evaluation of the excavation characteristics of the on-site soils is based on the results of our exploratory borings, site observations, and experience with similar materials.

9.2.3. Fill Materials

Soils with PI values of 15 or less (as evaluated by ASTM D 4318) are generally suitable for use as engineered fill. Our Atterberg limits tests indicated PI values ranging between 0 (non-plastic) and 17. Based on these test results, some of the on-site soils are not suitable for re-use as engineered fill.

Engineered fill should not include organic material, construction debris, or other nonsoil fill materials. Rock particles and clay lumps should not be larger than 4 inches in dimension. Unsuitable material should be disposed of off-site or in non-structural areas.

9.2.4. Grading and Subgrade Preparation

In general, grading operations should be performed in accordance with Section 205 of the COT/PC Specifications.

Due to potential conflicts with underground utilities, we recommend that the subgrade be improved by the application of Geogrid (Tensar Geogrid TX7 or equivalent). Geogrid should be placed in accordance with the manufacturer's instructions.

Alternatively, if Geogrid is not applied we recommend new pavements be supported on 6 inches of subgrade that is compacted by appropriate mechanical methods to a relative compaction of 95 percent as evaluated by ASTM D 698 at a moisture content generally near optimum. The thickness of the improvement zone should be measured from the bottom of the AB layer.

In areas where excessive moisture is encountered so that the above compaction cannot be achieved and/or the subgrade surface is unstable and yielding (pumping) under the

roller wheels, subgrade soils should be scarified to a depth of 12 inches, aerated, and recompacted as specified above. Alternatively, subgrade soils in problem areas should be and replaced with engineered fill to a depth of 12 inches below the bottom of the AB.

9.3. Pavement Design Summary (Full-Depth Reconstruction)

The following sections present our design assumptions and recommendations for a new flexible pavement sections in areas where full-depth pavement reconstruction is needed due to severe pavement distress.

The pavement sections were developed using the Active Practices Guidelines issued by the COT Department of Transportation (Guidelines) and the Arizona Department of Transportation (ADOT) Preliminary Engineering and Design Manual (PEDM). The new pavement sections are designed for a 20-year service life.

9.3.1. Traffic

The future traffic numbers used in this report are based on traffic counts provided by Kimley-Horn and Associates, Inc. (KHA), and later communication with the KHA. This information is presented in Appendix D. Based on the above information, and using the procedures outlined in the Guidelines and PEDM, the design number of equivalent single axle loads (ESALs) for the design lane during the 20-year design period was calculated as approximately 12,161,070.

9.3.2. R-Value and Resilient Modulus

The analysis for the design R-value for the pavement section has been performed based on procedures detailed in the Guidelines and the PEDM, using correlated R-values. The correlated R-values were derived from the PI and percent passing No. 200 Sieve test results. A summary of the R-values for this project is presented in Table 1 below:

Location	Sample Depth (ft)	Correlated R-Value
B-1	1.5-3.0	29
B-3	1.5-3.0	84
B-5	1.5-3.0	52

Table 1 – R-value Summary

In the interest of conservatism, we recommend that an R-value of 25 be used for pavement design for this project.

If the project needs fill from an off-site source, we recommend the soils used for subgrade support should have an R-value of 25 or more. If during construction, the subgrade is found to vary from the expected soil conditions, we should be contacted so we may re-evaluate our recommended R-values. Based on the above design R-values, the design subgrade resilient modulus (M_R) value of 10,844 pounds per square inch (psi) was calculated in accordance with the Guidelines.

9.3.3. Statistical Parameters

A standard deviation of 0.40 was used for design of the flexible pavement in accordance with the Guidelines. The level of reliability and standard normal deviation (Z_R) values were selected in accordance with the Guidelines for the arterial functional classification. Their respective values are presented in the table below:

Roadway	Functional Classification	Standard Deviation	Level of Reliability	Standard Normal Deviation
Irvington Road	Arterial	0.40	95 %	-1.645

 Table 2 – Summary of Statistical Parameters

9.3.4. Serviceability Index

Initial and terminal serviceability indices were selected for the pavement design of the roadways in accordance with the Guidelines. A summary of the serviceability indices for each roadway is provided in the table below:

Roadway	Roadway Functional Classification		Terminal Serviceability Index	Change in Serviceability
Irvington Road	Arterial	4.5	2.5	2.0

Table 3 – Summary of Serviceability Parameters

9.3.5. Layer Coefficients

The following structural coefficients were used for the pavement structure in accordance with the Guidelines:

- AC: 0.44.
- AB: 0.14.

A drainage coefficient of 1.25 was used for the AB coefficient as recommended in the Guidelines.

As mentioned in Section 4 above, due to conflicts with existing shallow utilities, it is recommended that the subgrade be improved using Geogrid (Tensar Geogrid TX7 or equivalent). In this case the AB layer coefficient is 0.314.

9.3.6. Asphalt Pavement Section Recommendations

The structural number (SN) was calculated based on the parameters described above. The table below presents the calculated SN value and the recommended structural pavement sections. Supporting documentation of the pavement optimization design using Geogrid is presented in Appendix E:

Vinyo & Moore

Table 4 – Structural Pavement Sections for 20-Year Design L	life
---	------

Roadway	SN	$AC (in)^1$	AB $(in)^2$				
COT Preferred Pavement with Geogrid	4.60	6	5				
Alternative Pavement without Geogrid	4.43	7	8				
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.							

The above pavement structural section has been designed with the assumption that the subgrade is prepared by as recommended in Section 9.2.4.

10. SITE DRAINAGE

Surface drainage should be provided to divert water away from paved surfaces. Surface water should also not be permitted to pond on or below pavement areas. Positive drainage for this project is defined as a slope of 2 percent or more for a distance of 5 feet or more away from the pavements. To deter accumulation of water below the new pavement sections, the bottom of the overexcavated zone below the new pavement should be sloped toward the edges of the roadway.

11. PRE-CONSTRUCTION CONFERENCE

We recommend that a pre-construction conference be held. Representatives of the owner, the civil engineer, Ninyo & Moore, and the contractor should be in attendance to discuss the project plans and schedule. Our office should be notified if the project description included herein is incorrect or if the project characteristics are significantly changed.

12. CONSTRUCTION OBSERVATION AND TESTING

During construction operations, we recommend that Ninyo & Moore perform observation and testing services for the project. These services should be performed to evaluate exposed subgrade conditions, including the extent and depth of overexcavation, to evaluate the suitability of proposed borrow materials for use as engineered fill and to observe placement and test

compaction of fill soils. Qualified subcontractors utilizing appropriate techniques and construction materials should perform construction of the proposed improvements.

13. LIMITATIONS

The field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation will be performed upon request. Please also note that our evaluation was limited to assessment of the geotechnical aspects of the project, and did not include evaluation of structural issues, environmental concerns, or the presence of hazardous materials.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document.

This report is intended for design purposes only. It does not provide sufficient data to prepare an accurate bid by contractors. It is suggested that the bidders and their geotechnical consultant perform an independent evaluation of the subsurface conditions in the project areas. The independent evaluations may include, but not be limited to, review of other geotechnical reports prepared for the adjacent areas, site reconnaissance, and additional exploration and laboratory testing.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are

encountered, our office should be notified and additional recommendations, if warranted, will be provided upon request. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

inyo « Moo

14. **REFERENCES**

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards.

- Arizona Department of Transportation (ADOT), 1989, Preliminary Engineering and Design Manual, Materials Section, 3rd Edition: dated March.
- City of Tucson, Arizona, Department of Transportation, Engineering Division, 1987, Active Practices Guidelines: dated June 1.

Ninyo & Moore, In-house proprietary information.

N				
	Ninyo &	Woore	BORING LOCATIONS	FIGURE
Approximate Scale: 1 inch = 600 feet Note: Dimensions, directions, and locations are approximate.	PROJECT NO: 604817002	DATE: 12/15	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - IRVINGTON ROAD TUCSON, ARIZONA	2

APPENDIX A

BORING LOGS

Field Procedure for the Collection of Relatively Undisturbed Samples

Relatively undisturbed soil samples were obtained in the field using the following methods.

The Modified Split-Barrel Drive Sampler

The sampler, with an external diameter of 3.0 inches, was lined with 1-inch long, thin brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a hammer or the Kelly bar of the drill rig in general accordance with ASTM D 3550. The driving weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer or bar, and the number of blows per foot of driving are presented on the boring logs as an index to the relative resistance of the materials sampled. The samples were removed from the sample barrel in the brass rings, sealed, and transported to the laboratory for testing.

SOIL CLASSIFICATION CHART PER ASTM D 2488								GRAIN SIZE				
DD				SECON	DARY DIVISIONS		DESCRIPTION		SIEVE	GRAIN	APPROXIMATE	
PRIMARY DIVISIONS				OUP SYMBOL	GROUP NAME		DESCI		SIZE	SIZE	SIZE	
		CLEAN GRAVEL		GW	well-graded GRAVEL		Во	ulders	> 12"	> 12"	Larger than	
		less than 5% fines		GP	poorly graded GRAVEL						basketball-sized	
	GRAVEI			GW-GM	well-graded GRAVEL with silt		Co	bbles	3 - 12"	3 - 12"	Fist-sized to basketball-sized	
	more than	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt							
	coarse	CLASSIFICATIONS 5% to 12% fines		GW-GC	well-graded GRAVEL with clay			Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized	
	retained on			GP-GC	poorly graded GRAVEL with clay		Gravel				Pag sized to	
	INO. 4 SIEVE	GRAVEL with		GM	silty GRAVEL			Fine	#4 - 3/4"	0.19 - 0.75"	thumb-sized	
COARSE- GRAINED		FINES more than		GC	clayey GRAVEL			0	#40 #4	0.070 0.40"	Rock-salt-sized to	
SOILS		12% fines		GC-GM	silty, clayey GRAVEL			Coarse	#10 - #4	0.079 - 0.19"	pea-sized	
50% retained		CLEAN SAND less than 5% fines		SW	well-graded SAND		Sand	Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to	
on No. 200 sieve	SAND 50% or more of coarse fraction passes No. 4 sieve			SP	poorly graded SAND						rock-salt-sized	
		SAND with DUAL CLASSIFICATIONS 5% to 12% fines		SW-SM	well-graded SAND with silt			Fine	#200 - #40	0.0029 -	Flour-sized to	
				SP-SM	poorly graded SAND with silt					0.017	30gai-3i2eu	
				SW-SC	well-graded SAND with clay		Fines		Passing #200	< 0.0029"	Flour-sized and smaller	
				SP-SC	poorly graded SAND with clay							
		SAND with FINES more than 12% fines		SM	silty SAND		PLASTICITY CHART				•	
				SC	clayey SAND							
				SC-SM	silty, clayey SAND		7					
				CL	lean CLAY		° 6					
	SILT and	INORGANIC		ML	SILT		(Id) 5					
	CLAY liquid limit			CL-ML	silty CLAY			D		CH or OF		
FINE-	less than 50%	OBCANIC		OL (PI > 4)	organic CLAY		≚ 3	p				
SOILS		ORGANIC		OL (PI < 4)	organic SILT			D	CL or (WH or OH	
50% or				СН	fat CLAY		I SV 1					
No. 200 sieve	SILT and CLAY	INORGANIC		MH	elastic SILT		CL-ML ML or OL 0 10 20 30 40 50 60 70 80		-ML ML or OL			
	liquid limit 50% or more	OPCANIC		OH (plots on or above "A"-line)	organic CLAY				80 90 100			
		URGANIC		OH (plots below "A"-line)	organic SILT			LIQUID LIMIT (LL), %				
	Highly C			PT	Peat							

APPARENT DENSITY - COARSE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER		
DENSITY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	
Very Loose	≤4	≤ 8	<u>≤</u> 3	≤ 5	
Loose	5 - 10	9 - 21	4 - 7	6 - 14	
Medium Dense	11 - 30	22 - 63	8 - 20	15 - 42	
Dense	31 - 50	64 - 105	21 - 33	43 - 70	
Very Dense	> 50	> 105	> 33	> 70	

Ninyo & Moore

CONSISTENCY - FINE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER		
CONSIS- TENCY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	
Very Soft	< 2	< 3	< 1	< 2	
Soft	2 - 4	3 - 5	1 - 3	2 - 3	
Firm	5 - 8	6 - 10	4 - 5	4 - 6	
Stiff	9 - 15	11 - 20	6 - 10	7 - 13	
Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26	
Hard	> 30	> 39	> 20	> 26	

USCS METHOD OF SOIL CLASSIFICATION

Explanation of USCS Method of Soil Classification DATE

DEPTH (feet)	Bulk SAMPLES	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BORING LOG EXPLANATION SHEET				
0							Bulk sample.				
							Modified split-barrel	drive sampler. lified split-barrel dri	ve samnler		
									ve sampler.		
							Sample retained by ot	hers.			
							Standard Penetration	Test (SPT).			
5 -	\Box						No recovery with a SI	PT.			
		XX/XX					Shelby tube sample. I	Distance pushed in in	nches/length of sample	recovered in inches.	
							No recovery with She	lby tube sampler.			
							Continuous Push Sam	ple.			
			Ş				Seepage.				
10-			ļi. ₩ļi				Groundwater encount Groundwater measure	ered during drilling.			
						-					
						SM	MAJOR MATERIAL Solid line denotes uni	<u>TYPE (SOIL)</u> : t change.			
						CL	Dashed line denotes n	naterial change.			
							Attitudes: Strike/Dip				
							c: Contact				
15 -							J: Joint f: Fracture				
							F: Fault				
							s: Shear				
	$\left \right $						bss: Basal Slide Surfa	ce			
							sz: Shear Zone				
							sbs: Shear Bedding Surface				
							The total depth line is	a solid line that is d	rawn at the bottom of	the boring.	
20							<u> </u>		BORINGLOG	<u> </u>	
	Ninun & Anne Fynlanation of Boring Log Symbols							mbols			
			Э					PROJECT NO.	DATE	FIGURE	

PLES			E)			DATE DRILLED						
tet) SAM	D	(%)	(PCI		NOIT .	GROUND ELEVATION 2,455' ± (MSL) SHEET 1 OF 1						
TH (fe	VS/FO	IURE	VSITY	MBO	MBO	IFICA S.C.S.	IFICA S.C.S	IFICA S.C.S.	S.C.S	FICA S.C.S.	S.C.S	METHOD OF DRILLING CME-75, 8" Hollow-Stem Auger (Southlands)
DEP.	BLOV	NOIS ⁻	Y DEI	SY	LASS U.	DRIVE WEIGHT 140 lbs. Automatic DROP 30"						
			DR		Ö	SAMPLED BY LOGGED BY REVIEWED BY						
0						DESCRIPTION/INTERPRETATION						
				8		ACCRECATE DASE: Amagyimately 4.1/2 inches thick						
					SC	FILL:						
	6					Brown, moist, loose, clayey SAND; few gravel.						
						Total depth = 3 feet. Groundwater not encountered during drilling.						
						Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling.						
5						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level						
						due to seasonal variations in precipitation and several other factors as discussed in the report.						
						The ground elevation shown above is an estimation only. It is based on our interpretations						
						of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.						
10												
15												
		<u> </u>				BORING LOG						
	MÌ	<u>n</u>	10	&	Μ	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - IRVINGTON ROAD TUCSON, ARIZONA						
		J				PROJECT NO. DATE FIGURE 604817002 12/15 A-1						

DATE DRILLED 9/30/15 BORING	NOB-2
	SHEET1 OF1
\mathbb{Z}	outhlands)
$\begin{bmatrix} \mathbf{A} \\ \mathbf{A} $	DROP
SAMPLED BY LOGGED BY R	EVIEWED BY
DESCRIPTION/INTERPRETA 0 ASPHALT CONCRETE: Approximately 8 1/2 inches the second	TION
AGGREGATE BASE: Approximately 12 inches thick	
12 Brown, dry, loose, clayey SAND; scattered calche hold 5 Total depth = 3 feet. Groundwater not encountered during drilling. Backfilled and asphalt concrete patched on 9/30/15 shor Notes: Groundwater, though not encountered at the time of drill due to seasonal variations in precipitation and several of report. The ground elevation shown above is an estimation only of published maps and other documents reviewed for the not sufficiently accurate for preparing construction bids 10	tly after completion of drilling. ling, may rise to a higher level her factors as discussed in the 7. It is based on our interpretations e purposes of this evaluation. It is and design documents.
	G LOG
NINUD & MOOPE TUCSON PAVEMENT RECONSTRUCT TUCSON.	TION PROGRAM - IRVINGTON ROAD ARIZONA
	FIGURE

PLES			(=			DATE DRILLED 9/30/15 BORING NO. B-3
et) SAM	D	(%)	(PCF		TION	GROUND ELEVATION2,466' ± (MSL) SHEET OF
TH (fe	VS/FC	LURE	NSITY	MBO	IFICA S.C.S	METHOD OF DRILLING CME-75, 8" Hollow-Stem Auger (Southlands)
DEP ⁻ sulk iven BLOW	BLOV	BLOW	DRY DEN	SY	CLASS U.S	DRIVE WEIGHT 140 lbs. Automatic DROP 30"
						SAMPLED BY LOGGED BY REVIEWED BY
0						DESCRIPTION/INTERPRETATION ASPHALT CONCRETE: Approximately 8 inches thick.
				Î	<u></u>	AGGREGATE BASE: Approximately 2 inches thick.
	58					ALLUVIUM: Brown, dry, dense, silty SAND; few to little gravel, numerous caliche nodules. Total depth = 3 feet. Groundwater not encountered during drilling. Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling.
5						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.
						The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
10						
15						
20						
Alinun & AAnnra						TUCSON PAVEMENT RECONSTRUCTION PROGRAM - IRVINGTON ROAD
						PROJECT NO. DATE FIGURE
	,					604817002 12/15 A-3
PLES			E)			DATE DRILLED 9/30/15 BORING NO. B-4
----------------------	-------	----------	-------	------	----------------	---
et) SAM	D	(%)	(PCI		NOL	GROUND ELEVATION 2,472' ± (MSL) SHEET 1 OF 1
TH (fe	VS/FC	TURE	VSITY	MBO	IFICA S.C.S	METHOD OF DRILLING CME-75, 8" Hollow-Stem Auger (Southlands)
DEP 3ulk riven	BLOV	.SIOW	Y DEI	SΥ	LASS U	DRIVE WEIGHT 140 lbs. Automatic DROP 30"
			DR		0	SAMPLED BY LOGGED BY REVIEWED BY
0						ASPHALT CONCRETE: Approximately 8 inches thick.
						AGGREGATE BASE: Approximately 10 inches thick.
					SC	
	15				00	Brown, dry, medium dense, clayey SAND; trace fine gravel, scattered caliche nodules.
				****		Total depth = 3 feet. Groundwater not encountered during drilling.
						Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling.
5						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.
						The ground elevation shown above is an estimation only. It is based on our interpretation of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
10						
15						
20		<u> </u>				
				&		TUCSON PAVEMENT RECONSTRUCTION PROGRAM - IRVINGTON ROAD TUCSON. ARIZONA
		7	_			PROJECT NO. DATE FIGURE 604817002 12/15 A-4

	PLES			(-			DATE DRILLED 9/30/15 BORING NO. B-5
et)	SAMI	Ō	(%)	(PCF	.	TION	GROUND ELEVATION 2,481' ± (MSL) SHEET 1 OF 1
LH (fe		/S/FO	URE	ISITY	MBOI	IFICA S.C.S.	METHOD OF DRILLING CME-75, 8" Hollow-Stem Auger (Southlands)
DEPI	iven	BLOW	VOIST	Y DEN	SΥ	ASS U.S	DRIVE WEIGHT 140 lbs. Automatic DROP 30"
		_	~	DR		ō	SAMPLED BY DM LOGGED BY DM REVIEWED BY
0							DESCRIPTION/INTERPRETATION
							AGODEGATE DAGE A SECTION MALE A 1/2 in close the section of the se
-	-					SC	AGGREGATE BASE: Approximately 4 1/2 inches thick.
		28					Brown, dry, medium dense, clayey SAND; scattered caliche nodules.
-							Total depth = 3 feet. Groundwater not encountered during drilling.
-							Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling.
5 -							Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.
							The ground elevation shown above is an estimation only. It is based on our interpretation of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
10 -							
15-							
20							
	<u> </u>						BORING LOG
		\mathbf{V}	Πļ	10	&	MQ	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - IRVINGTON ROAD TUCSON, ARIZONA
		V	J		_		PROJECT NO. DATE FIGURE 604817002 12/15 A-5

APPENDIX B

LABORATORY TESTING

Classification

Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings in Appendix A.

Gradation Analysis

One gradation analysis test was performed on a selected representative soil sample in general accordance with ASTM D 422. The grain-size distribution curves are shown in Figures B-1 through B-3. These test results were utilized in evaluating the soil classification in accordance with the USCS.

Atterberg Limits

Tests were performed on a selected representative fine-grained soil sample to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. These test results were utilized to evaluate the soil classification in accordance with the USCS. The test results and classifications are shown on Figure B-4.

• B-1 1.5-3.0 35 18 17 CL SC • B-3 1.5-3.0 35 20 15 CL SC • B-5 1.5-3.0 35 20 15 CL SC • B-5 1.5-3.0 35 20 15 CL SC • H H H H H H H SC • H <	SYMBOL	LOCATION	DEPTH (FT)	LIQUID LIMIT, LL	PLASTIC LIMIT, PL	PLASTICITY INDEX, PI	USCS CLASSIFICATION (Fraction Finer Than No. 40 Sieve)	USCS (Entire Sample)
	•	B-1	1.5-3.0	35	18	17	CL	SC
• B5 15-3.0 35 20 15 CL SC • B-5 15-3.0 35 20 15 CL SC • PC INDICATES NON-PLASTIC •	-	B-3	1.5-3.0			NP	ML	SM
	•	B-5	1.5-3.0	35	20	15	CL	SC
Ningo & Moore ATTERBERG LIMITS TEST RESULTS Figure PROJECT NO. DATE TUCSON PAVEMENT RECONSTRUCTION PROGRAM - IRVINGTON ROAD TUCSON, ARIZONA B-4 604817002 12/15 TUCSON PAVEMENT RECONSTRUCTION PROGRAM - IRVINGTON ROAD B-4	NP - INDICAT	ES NON-PLAST 60 50 40 30 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		or OL ML or O 30 40 LIQ	Cl Cl DL 50 6 UID LIMIT, L	H or OH MH 60 70 L TH ASTM D 4318		
PROJECT NO. DATE TUCSON PAVEMENT RECONSTRUCTION PROGRAM - IRVINGTON ROAD TUCSON, ARIZONA B-4	 Ninu		re		TFRRF		S TEST RESU	TS FIGURE
604817002 12/15 TUCSON, ARIZONA B-4			лт <u>е</u>	TUCSC				ROAD
	604817002	12	/15	-		TUCSON, AF	RIZONA	B-4

APPENDIX C

PAVEMENT AND CORE SUMMARY

TUCSON PAVEMENT REHABILITATION PROGRAM - FY 16

No.	Location	Approximate AC thickness (in)*	Recovered AC Thickness (in)	Core Description	Pavement Condition
B-1	Westbound, 120 feet west of 17th Avenue	9.5	9.25	Three lifts, 2", 3.5" and 4", few voids.	Extensive, block, transverse, longitudinal and irregular cracking, potholes developing at crack crossings.
B-2	Eastbound, 250 feet west of 13th Avenue	8.5	8.5	Three lifts, 2", 2.5" and 4", few voids.	Extensive, block, transverse, longitudinal and irregular cracking.
B-3	Westbound, 500 feet east of 12th Avenue	8	8	Three lifts, 2", 3" and 3", few voids.	Extensive, block, transverse, longitudinal and irregular cracking.
B-4	Eastbound, 150 feet west of 9th Avenue	8	8	Three lifts, 2", 3" and 3", few voids.	Extensive, block, transverse, longitudinal and irregular cracking.
B-5	Eastbound, 200 feet west of 6th Avenue	8.5	8.5	Three lifts, 2", 4" and 2.5", few voids.	Extensive, block, transverse, longitudinal and irregular cracking, alligator cracking developing in wheel path.

IRVINGTON ROAD - PAVEMENT AND CORE SUMMARY

Notes:

* Measured in the boring

APPENDIX D

TRAFFIC DATA

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 (520) 316-6745

Site Code: 15-1283-003 Station ID: Wed 10/07/2015 Irvington Rd. btwn. 11th Ave. & Lostan Ave. 32.163336, -110.975293 Latitude: 0' 0.000 Undefined

Eastbound												La		J Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	0	53	13	2	2	1	0	0	0	0	0	0	0	71
01:00	0	30	7	2	0	1	1	0	1	0	0	0	0	42
02:00	0	29	5	0	0	0	0	0	0	0	0	0	0	34
03:00	0	38	8	0	2	0	0	0	0	0	0	0	0	48
04:00	2	97	30	1	3	3	0	0	0	0	0	0	0	136
05:00	6	265	103	11	24	4	0	1	0	0	1	1	0	416
06:00	16	326	133	11	35	9	1	2	1	0	1	1	0	536
07:00	30	669	154	12	36	19	5	4	0	1	2	4	2	938
08:00	20	569	169	13	37	20	4	4	3	0	3	1	3	846
09:00	11	481	111	11	33	20	5	1	1	1	0	0	0	675
10:00	10	507	141	9	43	10	0	6	0	0	0	1	0	727
11:00	13	529	128	10	24	13	3	6	1	0	1	0	0	728
12 PM	12	574	145	8	37	15	1	6	2	1	2	1	0	804
13:00	8	608	147	8	37	16	1	2	2	0	2	1	1	833
14:00	16	592	140	10	33	18	4	2	1	1	3	1	1	822
15:00	11	670	158	11	38	15	2	1	0	0	0	1	0	907
16:00	19	610	133	14	37	13	4	1	1	0	0	2	1	835
17:00	18	673	147	11	47	13	3	3	2	0	0	2	1	920
18:00	17	639	112	11	27	17	2	4	1	0	1	0	2	833
19:00	15	452	98	6	20	7	1	1	1	0	1	2	0	604
20:00	4	372	53	5	16	2	0	0	1	1	0	0	1	455
21:00	5	267	49	5	4	4	0	0	1	0	0	0	0	335
22:00	2	193	19	4	10	3	0	0	1	0	0	0	0	232
23:00	0	114	18	3	2	1	0	0	0	0	0	0	0	138
Total	235	9357	2221	178	547	224	37	44	20	5	17	18	12	12915
Percent	1.8%	72.5%	17.2%	1.4%	4.2%	1.7%	0.3%	0.3%	0.2%	0.0%	0.1%	0.1%	0.1%	
AM Peak	07:00	07:00	08:00	08:00	10:00	08:00	07:00	10:00	08:00	07:00	08:00	07:00	08:00	07:00
Vol.	30	669	169	13	43	20	5	6	3	1	3	4	3	938
PM Peak	16:00	17:00	15:00	16:00	17:00	14:00	14:00	12:00	12:00	12:00	14:00	16:00	18:00	17:00
Vol.	19	673	158	14	47	18	4	6	2	1	3	2	2	920
Grand Total	235	9357	2221	178	547	224	37	44	20	5	17	18	12	12915
Percent	1.8%	72.5%	17.2%	1.4%	4.2%	1.7%	0.3%	0.3%	0.2%	0.0%	0.1%	0.1%	0.1%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 (520) 316-6745

Site Code: 15-1283-003 Station ID: Wed 10/07/2015 Irvington Rd. btwn. 11th Ave. & Lostan Ave. 32.163336, -110.975293 Latitude: 0' 0.000 Undefined

Westbound												La	titude: 0 [°] 0.000	Undefine
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	2	72	10	2	1	0	0	0	1	0	0	0	0	88
01:00	0	38	8	0	1	0	0	0	0	0	0	0	0	47
02:00	1	36	6	0	1	0	0	0	0	0	0	0	0	44
03:00	0	36	1	0	0	0	0	0	0	0	0	0	0	37
04:00	0	79	10	0	0	1	0	0	2	0	0	0	0	92
05:00	0	161	30	4	11	7	0	0	1	0	0	0	0	214
06:00	6	244	51	3	12	9	1	1	2	0	0	0	0	329
07:00	6	409	74	2	21	3	3	2	1	0	1	0	0	522
08:00	12	509	89	4	25	9	3	4	3	0	0	0	1	659
09:00	9	528	106	1	18	12	1	1	3	0	0	0	1	680
10:00	8	534	125	0	16	12	4	1	3	0	0	1	1	705
11:00	19	631	115	0	23	11	0	1	2	0	1	1	0	804
12 PM	12	656	132	1	21	13	3	2	3	1	2	2	1	849
13:00	12	685	91	5	17	16	7	3	1	0	2	0	0	839
14:00	11	694	136	3	27	11	0	2	0	0	2	0	2	888
15:00	25	800	138	4	21	17	6	9	2	0	1	1	1	1025
16:00	34	835	160	2	18	26	9	6	0	1	3	2	3	1099
17:00	30	514	77	8	14	22	23	7	11	2	8	6	11	733
18:00	13	766	134	4	9	13	5	4	2	0	2	1	0	953
19:00	16	602	93	1	6	11	0	0	0	0	0	1	0	730
20:00	10	536	73	0	6	8	0	2	2	0	1	0	0	638
21:00	4	360	36	0	2	5	1	0	2	0	1	0	0	411
22:00	3	204	19	0	3	1	0	0	0	0	0	0	0	230
23:00	0	115	18	5	0	1	0	0	1	0	0	0	0	140
Total	233	10044	1732	49	273	208	66	45	42	4	24	15	21	12756
Percent	1.8%	78.7%	13.6%	0.4%	2.1%	1.6%	0.5%	0.4%	0.3%	0.0%	0.2%	0.1%	0.2%	
AM Peak	11:00	11:00	10:00	05:00	08:00	09:00	10:00	08:00	08:00		07:00	10:00	08:00	11:00
Vol.	19	631	125	4	25	12	4	4	3		1	1	1	804
PM Peak	16:00	16:00	16:00	17:00	14:00	16:00	17:00	15:00	17:00	17:00	17:00	17:00	17:00	16:00
Vol.	34	835	160	8	27	26	23	9	11	2	8	6	11	1099
Grand Total	233	10044	1732	49	273	208	66	45	42	4	24	15	21	12756
Percent	1.8%	78.7%	13.6%	0.4%	2.1%	1.6%	0.5%	0.4%	0.3%	0.0%	0.2%	0.1%	0.2%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 (520) 316-6745

Site Code: 15-1283-003 Station ID: Wed 10/07/2015 Irvington Rd. btwn. 11th Ave. & Lostan Ave. 32.163336, -110.975293 Latitude: 0' 0.000 Undefined

Eastbound.	Westbound	d										La	titude: 0° 0.00	J Undefine
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	2	125	23	4	3	1	0	0	1	0	0	0	0	159
01:00	0	68	15	2	1	1	1	0	1	0	0	0	0	89
02:00	1	65	11	0	1	0	0	0	0	0	0	0	0	78
03:00	0	74	9	0	2	0	0	0	0	0	0	0	0	85
04:00	2	176	40	1	3	4	0	0	2	0	0	0	0	228
05:00	6	426	133	15	35	11	0	1	1	0	1	1	0	630
06:00	22	570	184	14	47	18	2	3	3	0	1	1	0	865
07:00	36	1078	228	14	57	22	8	6	1	1	3	4	2	1460
08:00	32	1078	258	17	62	29	7	8	6	0	3	1	4	1505
09:00	20	1009	217	12	51	32	6	2	4	1	0	0	1	1355
10:00	18	1041	266	9	59	22	4	7	3	0	0	2	1	1432
11:00	32	1160	243	10	47	24	3	7	3	0	2	1	0	1532
12 PM	24	1230	277	9	58	28	4	8	5	2	4	3	1	1653
13:00	20	1293	238	13	54	32	8	5	3	0	4	1	1	1672
14:00	27	1286	276	13	60	29	4	4	1	1	5	1	3	1710
15:00	36	1470	296	15	59	32	8	10	2	0	1	2	1	1932
16:00	53	1445	293	16	55	39	13	7	1	1	3	4	4	1934
17:00	48	1187	224	19	61	35	26	10	13	2	8	8	12	1653
18:00	30	1405	246	15	36	30	7	8	3	0	3	1	2	1786
19:00	31	1054	191	7	26	18	1	1	1	0	1	3	0	1334
20:00	14	908	126	5	22	10	0	2	3	1	1	0	1	1093
21:00	9	627	85	5	6	9	1	0	3	0	1	0	0	746
22:00	5	397	38	4	13	4	0	0	1	0	0	0	0	462
23:00	0	229	36	8	2	2	0	0	1	0	0	0	0	278
Total	468	19401	3953	227	820	432	103	89	62	9	41	33	33	25671
Percent	1.8%	75.6%	15.4%	0.9%	3.2%	1.7%	0.4%	0.3%	0.2%	0.0%	0.2%	0.1%	0.1%	
AM Peak	07:00	11:00	10:00	08:00	08:00	09:00	07:00	08:00	08:00	07:00	07:00	07:00	08:00	11:00
Vol.	36	1160	266	17	62	32	8	8	6	1	3	4	4_	1532
PM Peak	16:00	15:00	15:00	17:00	17:00	16:00	17:00	15:00	17:00	12:00	17:00	17:00	17:00	16:00
Vol.	53	1470	296	19	61	39	26	10	13	2	8	8	12	1934
One al														
Grand Total	468	19401	3953	227	820	432	103	89	62	9	41	33	33	25671
Percent	1.8%	75.6%	15.4%	0.9%	3.2%	1.7%	0.4%	0.3%	0.2%	0.0%	0.2%	0.1%	0.1%	

APPENDIX E

PAVEMENT OPTIMIZATION DESIGN ANALYSIS BY TENSAR

SpectraPave4 PRO[™] Spectra averageTensarPavement Optimization Design Analysis

Design Parameters for AASHTO (1993) Equation

Reliability (%)	= 95	Initial Serviceability	= 4.5
Standard Normal Deviate	= -1.645	Terminal Serviceability	= 2.5
Standard Deviation	= 0.4	Change in Serviceability	= 2

Aggregate fill shall conform to following requirement:

D50 <= 27mm (Base course)

Unstabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
ABC	Aggregate Base Course	20	0.140	1.25

Stabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
MSL	Mechanically Stabilized Base Cour	20	0.314	1.25

Unstabilized Pavement

Subgrade Modulus = 10,844 (psi) Structural Number = 4.480 Calculated Traffic (ESALs) = 13,063,000

Stabilized Pavement

Subgrade Modulus = 10,844 (psi) Structural Number = 4.602 Calculated Traffic (ESALs) = 15,793,000

LIMITATIONS OF THE REPORT

The designs, illustrations, information and other content included in this report are necessarily general and conceptual in nature, and do not constitute engineering advice or any design intended for actual construction. Specific design recommendations can be provided as the project develops.								
Project Name		Irvington Road						
Company Name		Tensar						
Designer	Schlessinger	Date	11/16/15					

This document was prepared using SpectraPave4 PRO™ Software Version 4.6.1 Developed by Tensar International Corporation Copyright 1998 - 2014, All Rights Reserved.

PAVEMENT EVALUATION TUCSON PAVEMENT RECONSTRUCTION PROGRAM NICARAGUA DRIVE TUCSON, ARIZONA

PREPARED FOR:

Kimley-Horn & Associates, Inc. 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

PREPARED BY:

Ninyo & Moore Geotechnical and Environmental Sciences Consultants 1991 East Ajo Way, Suite 145 Tucson, Arizona 85713

> December 15, 2015 Project No. 604817002

1991 East Ajo Way, Suite 145 • Tucson, Arizona 85713 • Phone (520) 577-7600 • Fax (520) 577-7606

December 15, 2015 Project No. 604817002

Mr. Rick Solis, P.E. Kimley-Horn 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

Subject: Pavement Evaluation Tucson Pavement Reconstruction Program – Nicaragua Drive Tucson, Arizona

Dear Mr. Solis:

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, Ninyo & Moore has performed a pavement evaluation for the above-referenced site. The attached report presents our methodology, findings, conclusions, and recommendations regarding the geotechnical conditions at the project site.

We appreciate the opportunity to be of service to you during this phase of the project.

Marek J. Kasztalski, PE, PMP, LEED AP Senior Geotechnical Engineer Fred Narcaroti

MJK/DT/FFN/tlp

Distribution: (1) Addressee (Electronic Copy)

Fred Narcaroti Principal/Tucson Office Manager

1991 East Ajo Way, Suite 145 • Tucson, Arizona 85713 • Phone (520) 577-7600 • Fax (520) 577-7606

TABLE OF CONTENTS

Page

1.	INTRODUCTION
2.	SCOPE OF SERVICES
3.	SITE DESCRIPTION
4.	PROPOSED CONSTRUCTION
5.	EXISTING PAVEMENT CONDITION
6.	FIELD EXPLORATION AND LABORATORY TESTING
7.	SUBSURFACE CONDITIONS
8.	CONCLUSIONS
9.	RECOMMENDATIONS59.1. Recommended Pavement Structural Sections59.2. Earthwork69.2.1. Site Preparation69.2.2. Excavations69.2.3. Fill Materials79.2.4. Grading and Subgrade Preparation79.3. Pavement Design Summary89.3.1. Traffic89.3.2. R-Value and Resilient Modulus89.3.3. Statistical Parameters99.3.4. Serviceability Index99.3.5. Layer Coefficients99.3.6. Asphalt Pavement Section Recommendations10
10.	SITE DRAINAGE
11.	PRE-CONSTRUCTION CONFERENCE11
12.	CONSTRUCTION OBSERVATION AND TESTING11
13.	LIMITATIONS11
14.	REFERENCES

TABLES

Table 1 – Summary of Statistical Parameters	9
Table 2 – Summary of Serviceability Parameters	9
Table 3 – Structural Pavement Sections for 20-Year Design Life	10

Figures

Figure 1 – Site Location Figure 2 – Boring Locations

Appendices

Appendix A – Boring Logs

Appendix B – Laboratory Testing

Appendix C – Pavement and Core Summary

Appendix D – Traffic Data

Appendix E – Pavement Optimization Design Analysis by Tensar

1. INTRODUCTION

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, we have performed a pavement evaluation for the Nicaragua Drive Pavement Reconstruction project between Wilmot Road and Calle Polar, in Tucson, Arizona. The purpose of our evaluation was to assess the pavement and subgrade conditions along the project alignment in order to provide geotechnical recommendations for design and construction. This report presents the results of our evaluation, conclusions, and recommendations regarding the proposed construction.

2. SCOPE OF SERVICES

The scope of our services generally included:

- Preparing a field testing plan and associated permit application for submittal to the City of Tucson (COT).
- Conducting a visual reconnaissance of the pavement along the alignment and marking out the boring locations.
- Notifying Arizona811 of our boring locations prior to conducting the field work.
- Arranging for traffic control measures to conduct the field work.
- Coring the existing asphaltic concrete (AC) pavement at two locations along the project alignment.
- Exploring the subsurface soils within the project limits by drilling, logging, and sampling two exploratory soil borings to approximate depths of 3 feet below ground surface (bgs). The boring logs are presented in Appendix A.
- Performing laboratory tests on selected samples collected from our borings to evaluate gradation and Atterberg limits. The results of the laboratory tests are included in Appendix B.
- Preparing this report presenting our findings, conclusions and recommendations regarding the proposed reconstruction.

Our scope of services did not include environmental consulting services such as hazardous waste sampling or analytical testing at the site. A detailed scope of services and estimated fee for such services can be provided upon request.

3. SITE DESCRIPTION

The project site is located in Section 30 of Township 14 South, Range 15 East relative to the Gila and Salt River Base Line and Meridian. The project alignment extends along Nicaragua Drive between Wilmot Road and Calle Polar, in Tucson, Arizona (Figure 1).

At the time of our evaluation residential and commercial developments existed to the north of the project alignment. South of Nicaragua Drive, the project alignment was adjacent to the Davis Monthan Air Force Base. The roadway section consisted of one travel lane in each direction, concrete sidewalks, concrete curb, and no gutter, along the project alignment. A wedge curb was observed on portions of the north side of the roadway.

4. PROPOSED CONSTRUCTION

The COT has identified several segments of the existing street network for reconstruction and/or rehabilitation in fiscal year (FY) 2016 under Bid Package 2. The scope of this report includes Nicaragua Drive between Wilmot Road and Calle Polar. The project alignment is approximately 1,300 feet long.

We understand that the COT anticipates full-depth reconstruction of the existing roadway along the project alignment. The City proposes a new pavement section consisting of 5 inches of AC per of the COT Department of Transportation Standard Specifications Section 406 over 5 inches of aggregate base (AB) per Section 303 of the COT Standard Specifications.

We further understand that the COT intends to use Tucson Department of Transportation (TDOT) AC Mix No. 2 PG 76-22TR+ for the surface layer and TDOT AC Mix No. 1 PG 70-10 for the underlying layer. Both layers are proposed to be 2.5 inches thick.

Due to conflicts with shallow utility lines, subgrade improvement by overexcavation will not be performed and the new pavement section will be constructed on subgrade improved with Geogrid (Tensar Geogrid TX7 or equivalent).

The scope of this exploration included evaluation of the existing pavement section and subgrade soils in order to provide recommendations for pavement reconstruction in accordance with the current COT practice. Calculations for the new pavement section supporting the new construction proposed by the COT are presented in Section 9.3 and in Appendix E of this report.

5. EXISTING PAVEMENT CONDITION

On September 28, 2015, Ninyo & Moore conducted a limited visual evaluation of the pavement surface along the project alignment. Based on our field observations, the AC pavement exhibited signs of distress in many locations along the project alignment primarily consisting of longitudinal, transverse and irregular cracking, potholes and pavement surface raveling. Some of the cracks exhibited evidence of past sealing but they have re-opened since then. Asphaltic concrete patches were observed at some locations which were probably associated with past maintenance efforts (pothole and crack repairs) or with underground utility work. The crack widths generally varied between hairline (less than 1/8-inch) and over one inch.

In our opinion, the distress observed along the project alignment indicates structural failure and is related to a combination of pavement age, traffic, and environmental impacts.

6. FIELD EXPLORATION AND LABORATORY TESTING

On September 28, 2015, Ninyo & Moore conducted a geotechnical exploration in order to evaluate the subsurface conditions and collect AC cores and soil samples for laboratory testing. Our evaluation consisted of coring the existing AC pavement, drilling, logging, and sampling two small-diameter borings, denoted as B-1 and B-2, utilizing a CME-45 truck-mounted drill rig equipped with hollow-stem augers. The borings extended to depths of approximately 3 feet bgs. The approximate locations of the borings are depicted on Figure 2.

Ninyo & Moore personnel logged the borings in general accordance with the Unified Soil Classification System (USCS) and American Society for Testing and Materials (ASTM) D 2488 by observing cuttings and drive samples. Collected ring samples were trimmed in the field, wrapped in plastic bags, and placed in cylindrical plastic containers to retain in-place moisture conditions.

The soil samples collected from our drilling activities were transported to the Ninyo & Moore laboratory in Tucson, Arizona for geotechnical laboratory testing. The tests included gradation and Atterberg limits. A description of each laboratory test method and the test results are presented in Appendix B.

7. SUBSURFACE CONDITIONS

Our knowledge of the subsurface conditions at the project site is based on our field exploration, laboratory testing, and general experience in the area. More detailed stratigraphic information is presented on the boring logs in Appendix A, attached to this report. The boring logs contain our field and laboratory test results, as well as our interpretation of conditions believed to exist between actual samples retrieved. Therefore, these boring logs contain both factual and interpretive information. Lines delineating subsurface strata on the boring logs are intended to group soils having similar engineering properties and characteristics. They should be considered approximate as the actual transition between soil types (strata) may be gradual. A key to the soil symbols and terms used on the boring logs is provided in Appendix A.

7.1. Asphaltic Concrete

Asphaltic concrete pavement was encountered at the surface of each of our borings. The AC thickness varied between approximately 3 ¹/₂ and 4 inches, in our borings. It should be noted that the thickness of the AC pavement between the sampling locations may vary and could be different from that encountered at our sampling locations. Detailed core descriptions are presented in Appendix C.

inyo & Moo

Aggregate base was not observed in our borings. It is possible the AB material blended with the native subgrade soils, such that delineation of the AB/subgrade interface was not easily interpreted.

7.2. Alluvium

Native alluvial soils were encountered below the pavement sections described above, and extended to the boring termination depths. The alluvium generally consisted of medium dense to very dense, clayey sands with varying amounts of gravel.

8. CONCLUSIONS

Based on the results of our visual and subsurface evaluations, laboratory testing, and data analysis, geotechnical considerations include the following:

- The on-site soils generally include clayey sands, with a plasticity index (PI) of 29. These soils may be sensitive to moisture content fluctuations and may be difficult to compact especially at higher moisture contents. The contractor should be aware of this condition.
- Due to the relatively widely spaced nature of our borings, soil conditions may differ from what was observed during our field exploration.
- The pavement exhibits significant distress in many locations along the project alignment consisting mainly of transverse, block and irregular cracking.
- Full-depth pavement reconstruction is considered for this project as proposed by the COT.

9. **RECOMMENDATIONS**

The following sections present our geotechnical recommendations for the project. If the proposed construction is changed from that discussed in this report, Ninyo & Moore should be contacted for additional recommendations.

9.1. Recommended Pavement Structural Sections

The recommended pavement sections are presented in the table below:

Pavement Section	Service Life (years)	AC (in) ¹	$AB (in)^2$			
COT Preferred Pavement with Geogrid	20	5	5			
Alternative Pavement Section without Geogrid	20	6.5	7			
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.						

9.2. Earthwork

The following sections provide our earthwork recommendations for this project. In general, the earthwork specifications contained in the *City of Tucson/Pima County Standard Specifications for Public Improvements, 2003 Edition (COT/PC Specifications)* are expected to apply unless specifically noted.

9.2.1. Site Preparation

Construction areas should be cleared of deleterious materials, if any are present, including abandoned utilities, construction debris, vegetation, and any other material that might interfere with the performance or progress of the work. These materials should be disposed of at a legal dumpsite. Existing features that call for relocation or removal and extend below finish grade, if present, should be removed, and the resulting excavations backfilled with engineered fill.

9.2.2. Excavations

Our evaluation of the excavation characteristics of the on-site soils is based on the results of our exploratory borings, site observations, and experience with similar materials.

9.2.3. Fill Materials

Soils with PI values of 15 or less (as evaluated by ASTM D 4318) are generally suitable for use as engineered fill. Our Atterberg limits test indicated a PI value of 29. Based on this test result, some of the on-site soils are not suitable for re-use as engineered fill.

Engineered fill should not include organic material, construction debris, or other nonsoil fill materials. Rock particles and clay lumps should not be larger than 4 inches in dimension. Unsuitable material should be disposed of off-site or in non-structural areas.

9.2.4. Grading and Subgrade Preparation

In general, grading operations should be performed in accordance with Section 205 of the COT/PC Specifications.

Due to potential conflicts with underground utilities, we recommend that the subgrade be improved by the application of Geogrid (Tensar Geogrid TX7 or equivalent). Geogrid should be placed in accordance with the manufacturer's instructions.

Alternatively, if Geogrid is not applied we recommend new pavements be supported on 6 inches of subgrade that is compacted by appropriate mechanical methods to a relative compaction of 95 percent as evaluated by ASTM D 698 at a moisture content generally near optimum. The thickness of the improvement zone should be measured from the bottom of the AB layer.

In areas where excessive moisture is encountered so that the above compaction cannot be achieved and/or the subgrade surface is unstable and yielding (pumping) under the roller wheels, subgrade soils should be scarified to a depth of 12 inches, aerated, and recompacted as specified above. Alternatively, subgrade soils in problem areas should be and replaced with engineered fill to a depth of 12 inches below the bottom of the AB.

9.3. Pavement Design Summary

The following sections present our design assumptions and recommendations for the new flexible pavement section of Nicaragua Drive as this roadway is scheduled for full-depth pavement reconstruction.

The pavement section was developed using the Active Practices Guidelines issued by the COT Department of Transportation (Guidelines) and the Arizona Department of Transportation (ADOT) Preliminary Engineering and Design Manual (PEDM). We assumed that the subgrade will be improved by the application of Geogrid or overexcavation, as outlined in Section 9.2.4 of this report. The new pavement sections are designed for a 20-year service life.

9.3.1. Traffic

The future traffic numbers used in this report are based on traffic counts provided by Kimley-Horn and Associates, Inc. (KHA), and later communication with the KHA. This information is presented in Appendix D. Based on the above information, and using the procedures outlined in the Guidelines and PEDM, the design number of equivalent single axle loads (ESALs) for the design lane during the 20-year design period was calculated as approximately 4,358,830.

9.3.2. R-Value and Resilient Modulus

The analysis for the design R-value for the pavement section has been performed based on procedures detailed in the Guidelines and the PEDM, using a correlated R-value. The correlated R-value was derived from the PI and percent passing No. 200 Sieve test results. The R-value calculated for these methods for this project is 22. In the interest of conservatism, we recommend that an R-value of 20 be used for pavement design for this project.

If the project needs fill from an off-site source, we recommend the soils used for subgrade support should have an R-value of 20 or more. If during construction, the subgrade is found to vary from the expected soil conditions, we should be contacted so

linyo « Moore

we may re-evaluate our recommended R-values. Based on the above design R-values, the design subgrade resilient modulus (M_R) value of 8,824 pounds per square inch (psi) was calculated in accordance with the Guidelines.

9.3.3. Statistical Parameters

A standard deviation of 0.40 was used for design of the flexible pavement in accordance with the Guidelines. The level of reliability and standard normal deviation (Z_R) values were selected in accordance with the Guidelines for the arterial functional classification. Their respective values are presented in the table below:

 Table 1 – Summary of Statistical Parameters

Roadway	Functional Classification	FunctionalStandardClassificationDeviation		Standard Normal Deviation
Nicaragua Drive	Arterial	0.40	95 %	-1.645

9.3.4. Serviceability Index

Initial and terminal serviceability indices were selected for the pavement design of the roadways in accordance with the Guidelines. A summary of the serviceability indices for each roadway is provided in the table below:

 Table 2 – Summary of Serviceability Parameters

Roadway	Functional Classification	Functional Classification Initial Index		Change in Serviceability
Nicaragua Drive	Arterial	4.5	2.5	2.0

9.3.5. Layer Coefficients

The following structural coefficients were used for the pavement structure in accordance with the Guidelines:

• AC: 0.44.

• AB: 0.14.

A drainage coefficient of 1.25 was used for the AB coefficient as recommended in the Guidelines.

As mentioned in Section 4 above, due to conflicts with existing shallow utilities, it is recommended that the subgrade be improved using Geogrid (Tensar Geogrid TX7 or equivalent). In this case the AB layer coefficient is 0.318.

9.3.6. Asphalt Pavement Section Recommendations

The structural number (SN) was calculated based on the parameters described above. The table below presents the calculated SN value and the recommended structural pavement sections. The AC thickness meets the COT requirements. Supporting documentation of the pavement optimization design using Geogrid is presented in Appendix E:

RoadwaySNAC (in)1AB (in)2COT Preferred Pavement
with Geogrid4.1955Alternative Pavement4.006.55

6.5

Table 3 – Structural Pavement Sections for 20-Year Design Life

Notes:

without Geogrid

¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.

4.09

The above pavement structural section has been designed with the assumption that the subgrade is prepared by as recommended in Section 9.2.4.

10. SITE DRAINAGE

Surface drainage should be provided to divert water away from paved surfaces. Surface water should also not be permitted to pond on or below pavement areas. Positive drainage for this project is defined as a slope of 2 percent or more for a distance of 5 feet or more away from the

7

pavements. To deter accumulation of water below the new pavement sections, the bottom of the overexcavated zone below the new pavement should be sloped toward the edges of the roadway.

11. PRE-CONSTRUCTION CONFERENCE

We recommend that a pre-construction conference be held. Representatives of the owner, the civil engineer, Ninyo & Moore, and the contractor should be in attendance to discuss the project plans and schedule. Our office should be notified if the project description included herein is incorrect or if the project characteristics are significantly changed.

12. CONSTRUCTION OBSERVATION AND TESTING

During construction operations, we recommend that Ninyo & Moore perform observation and testing services for the project. These services should be performed to evaluate exposed subgrade conditions, including the extent and depth of overexcavation, to evaluate the suitability of proposed borrow materials for use as engineered fill and to observe placement and test compaction of fill soils. Qualified subcontractors utilizing appropriate techniques and construction materials should perform construction of the proposed improvements.

13. LIMITATIONS

The field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation will be performed upon request. Please also note that our evaluation was limited to assessment of the geotechnical aspects of the project, and did not include evaluation of structural issues, environmental concerns, or the presence of hazardous materials.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document.

This report is intended for design purposes only. It does not provide sufficient data to prepare an accurate bid by contractors. It is suggested that the bidders and their geotechnical consultant perform an independent evaluation of the subsurface conditions in the project areas. The independent evaluations may include, but not be limited to, review of other geotechnical reports prepared for the adjacent areas, site reconnaissance, and additional exploration and laboratory testing.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are encountered, our office should be notified and additional recommendations, if warranted, will be provided upon request. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

Inyo & ____00

14. **REFERENCES**

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards.

- Arizona Department of Transportation (ADOT), 1989, Preliminary Engineering and Design Manual, Materials Section, 3rd Edition: dated March.
- City of Tucson, Arizona, Department of Transportation, Engineering Division, 1987, Active Practices Guidelines: dated June 1.

Ninyo & Moore, In-house proprietary information.

	Image: marked state	
<image/>	<image/>	ion

	160 Ninyo & Moore		BORING LOCATIONS	FIGURE
Approximate Scale: 1 inch = 160 feet Note: Dimensions, directions, and locations are approximate.	PROJECT NO: 604817002	DATE: 12/15	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - NICARAGUA DRIVE TUCSON, ARIZONA	2

APPENDIX A

BORING LOGS

Field Procedure for the Collection of Relatively Undisturbed Samples

Relatively undisturbed soil samples were obtained in the field using the following methods.

The Modified Split-Barrel Drive Sampler

The sampler, with an external diameter of 3.0 inches, was lined with 1-inch long, thin brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a hammer or the Kelly bar of the drill rig in general accordance with ASTM D 3550. The driving weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer or bar, and the number of blows per foot of driving are presented on the boring logs as an index to the relative resistance of the materials sampled. The samples were removed from the sample barrel in the brass rings, sealed, and transported to the laboratory for testing.

SOIL CLASSIFICATION CHART PER ASTM D 2488						GRAI	N SIZE					
			SECONDARY DIVISIONS				SIEVE	GRAIN	APPROXIMATE			
		510113	GR	OUP SYMBOL	GROUP NAME		DESCI		SIZE	SIZE	SIZE	
	CLEAN			GW	well-graded GRAVEL		Во	ulders	> 12"	> 12"	Larger than	
		less than 5% fines		GP	poorly graded GRAVEL						Dasketball-sized	
	GRAVEI			GW-GM	well-graded GRAVEL with silt		Co	bbles	3 - 12"	3 - 12"	Fist-sized to basketball-sized	
	more than	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt							
	coarse	CLASSIFICATIONS 5% to 12% fines		GW-GC	well-graded GRAVEL with clay			Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized	
	retained on			GP-GC	poorly graded GRAVEL with clay		Gravel				Pea-sized to	
	NO. 4 SIEVE	GRAVEL with		GM	silty GRAVEL			Fine	#4 - 3/4"	0.19 - 0.75"	thumb-sized	
COARSE- GRAINED		FINES more than		GC	clayey GRAVEL			Caaraa	#10 #4	0.070 0.10"	Rock-salt-sized to	
SOILS		12% fines		GC-GM	silty, clayey GRAVEL			Coarse	#10 - #4	0.079 - 0.19"	pea-sized	
50% retained		CLEAN SAND		SW	well-graded SAND		Sand	Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to rock-salt-sized	
on No. 200 sieve		less than 5% fines		SP	poorly graded SAND							
				SW-SM	well-graded SAND with silt			Fine	#200 - #40	0.0029 -	Flour-sized to	
	SAND 50% or more	SAND SAND with 0% or more DUAL of coarse CLASSIFICATIONS fraction 5% to 12% fines	SAND with DUAL		SP-SM	poorly graded SAND with silt					0.017	
	of coarse fraction		CATIONS	SW-SC	well-graded SAND with clay		Fines	Passing #200 < 0.0029"	Flour-sized and smaller			
	passes No. 4 sieve			SP-SC	poorly graded SAND with clay							
		SAND with FINES		SM	silty SAND				PLASTICITY CHART			
		more than		SC	clayey SAND							
		12/0 111105		SC-SM	silty, clayey SAND		7					
				CL	lean CLAY		° 6					
	SILT and	INORGANIC		ML	SILT		[Id) >					
	CLAY liquid limit			CL-ML	silty CLAY			D		CH or OF		
FINE-	less than 50%	ORGANIC		OL (PI > 4)	organic CLAY		20 10 10	o				
SOILS	GRAINED SOILS	OROANIC		OL (PI < 4)	organic SILT			D	CL or OL MH		MH or OH	
50% or more passes				СН	fat CLAY							
No. 200 sieve	SILT and CLAY			MH	elastic SILT					IL or OL		
	liquid limit 50% or more	ORGANIC	OH (plots on or above "A"-line) organic CLAY					0 10	20 30 40	50 60 70	80 90 100	
		UNGANIC		OH (plots below "A"-line)	organic SILT				LIQUID	LIMIT (LL), %	5	
	Highly C	Organic Soils		PT	Peat							

APPARENT DENSITY - COARSE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
APPARENT DENSITY (blows/foot) DENSITY (blows/foot) DENSITY		MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Loose	≤4	≤ 8	<u>≤</u> 3	≤ 5		
Loose	5 - 10	9 - 21	4 - 7	6 - 14		
Medium Dense	11 - 30	22 - 63	8 - 20	15 - 42		
Dense	31 - 50	64 - 105	21 - 33	43 - 70		
Very Dense	> 50	> 105	> 33	> 70		

Ninyo & Moore

CONSISTENCY - FINE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
CONSIS- TENCY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Soft	< 2	< 3	< 1	< 2		
Soft	2 - 4	3 - 5	1 - 3	2 - 3		
Firm	5 - 8	6 - 10	4 - 5	4 - 6		
Stiff	9 - 15	11 - 20	6 - 10	7 - 13		
Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26		
Hard	> 30	> 39	> 20	> 26		

USCS METHOD OF SOIL CLASSIFICATION

Explanation of USCS Method of Soil Classification DATE
DEPTH (feet)	Bulk SAMPLES	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BOR	ING LOG EX	PLANATION S	SHEET			
0							Bulk sample.						
							Modified split-barrel	drive sampler. lified split-barrel dri	ve samnler				
									ve sampler.				
							Sample retained by ot	ample retained by others.					
							Standard Penetration	Test (SPT).					
5 -	\Box						No recovery with a SI	PT.					
		XX/XX					Shelby tube sample. I	Distance pushed in in	nches/length of sample	recovered in inches.			
							No recovery with She	lby tube sampler.					
							Continuous Push Sam	ple.					
			Ş				Seepage.						
10-			ļi. ₩ļi				Groundwater encount Groundwater measure	ered during drilling.					
						-							
						SM	MAJOR MATERIAL Solid line denotes uni	<u>TYPE (SOIL)</u> : t change.					
						CL	Dashed line denotes n	naterial change.					
							Attitudes: Strike/Dip						
							c: Contact						
15 -							J: Joint f: Fracture						
							F: Fault						
							s: Shear						
	$\left \right $						bss: Basal Slide Surface						
							sz: Shear Zone						
							sbs: Shear Bedding Surface						
							The total depth line is a solid line that is drawn at the bottom of the boring.						
20							<u> </u>		BORINGLOG	<u> </u>			
			\overline{n}		&	AAn	nre		Explanation of Boring Log System	mbols			
			Э					PROJECT NO.	DATE	FIGURE			

APLES			F)		7	DATE DRILLED	9/28/15	BORI	NG NO	B-1
eet) SAN	DOT	(%)	Y (PC	L L	ATION.	GROUND ELEVATIO	N2,685' ±	(MSL)	SHEET	OF
HT (f	NS/F0	TURE	NSIT	MBC	SIFIC/	METHOD OF DRILLIN	IG <u>CME-45, 8" Ho</u>	llow-Stem Aug	ger (Southlands)	
DEF Bulk Driven	BLO	MOIS	sy de	Ś	n SLAS	DRIVE WEIGHT	140 lbs. (Auto	matic)	DROP _	30"
			DF		0	SAMPLED BY NA		BY NAG) BY
0						ASPHALT CONCRE	<u>TE:</u> Approximate	ly 4 inches the	hick.	
					SC	<u>ALLUVIUM</u> : Brown, moist, medium	dense, clayey SA	AND; few gi	ravel.	
	27									
				2222		Total Depth = 3 feet. Groundwater not encou	intered during dr	illing		
						Backfilled and asphalt	conrete natched	on 9/28/15 sl	hortly after co	mpletion of drilling
5						Notes: Groundwater, th	ough not encour	stared at the	time of drilling	a may rise to a higher
						level due to seasonal v the report.	ariations in preci	pitation and	several other f	actors as discussed in
						The ground elevation s of published maps and	hown above is an other documents	n estimation reviewed fo	only. It is base or the purposes	ed on our interpretations of this evaluation. It is
						not sufficiently accurat	e for preparing c	onstruction	bids and design	n documents.
10										
15										
20										
						nro	TUCSON PAVEM	BOF ENT RECONSTR	RING LOG	AM - NICARAGUA DRIVE
		ľ		×			PROJECT NO.	TUC	SON, ARIZONA	FIGURE
	7				•		604817002		12/15	A-1

DLES						DATE DRILLED	9/28/15	BORING NO.	В-2
et) SAMF	ы Б Б	(%)	(PCF		NOIT	GROUND ELEVATIO	N 2,691'±(M	SL) SHEET	1 OF 1
TH (fe	/S/FO	URE	ISITY	MBOL	IFICA.	METHOD OF DRILLI	NG CME-45, 8" Hollow	-Stem Auger (Southlands)	
DEP	iven 3LOM	IOIST		SΥ	-ASS U.S	DRIVE WEIGHT	140 lbs (Automati	c) DROP	30"
		2	DR		Ū	SAMPLED BY NA	G LOGGED BY	NAG REVIEWE	D BY
0						ASPHALT CONCRE	DESCRIPTION	INTERPRETATION	
					SC	ALLUVIUM: Brown moist very de	nse clavev SAND: f	ew gravel	
						biown, moist, very de	lise, elayey SAND, I	ew gravei.	
	50/5"								
						Total Depth = 2.9 feet			
						Groundwater not enco	untered during drillin	ıg.	
						Backfilled and asphalt	conrete patched on 9	9/28/15 shortly after co	ompletion of drilling.
5	_					Notes: Groundwater, level due to seasonal w the report.	though not encounter ariations in precipita	red at the time of drilli tion and several other	ng, may rise to a higher factors as discussed in
	_					The ground elevation of published maps and not sufficiently accura	shown above is an es other documents rev te for preparing cons	timation only. It is bas /iewed for the purpose truction bids and desig	sed on our interpretations es of this evaluation. It is gn documents.
	_								
	_								
15									
	-								
	_								
		<u> </u>						BORING LOG	
	Mi			&		ore	TUCSON PAVEMENT	RECONSTRUCTION PROGE TUCSON, ARIZONA	RAM - NICARAGUA DRIVE
		J					PROJECT NO. 604817002	DATE 12/15	FIGURE A-2

APPENDIX B

LABORATORY TESTING

Classification

Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings in Appendix A.

Gradation Analysis

One gradation analysis test was performed on a selected representative soil sample in general accordance with ASTM D 422. The grain-size distribution curve is shown in Figure B-1. These test results were utilized in evaluating the soil classification in accordance with the USCS.

Atterberg Limits

Tests were performed on a selected representative fine-grained soil sample to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. These test results were utilized to evaluate the soil classification in accordance with the USCS. The test results and classifications are shown on Figure B-2.

SYMBOL	LOCATION	DEPTH (FT)	LIQUID LIMIT, LL	PLASTIC LIMIT, PL	PLASTICITY INDEX, PI	USCS CLASSIFICATION (Fraction Finer Than No. 40 Sieve)	USCS (Entire Sample)
•	B-2	1.5-3.0	48	19	29	CL	SC

PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 4318

Ninyo «	Moore	ATTERBERG LIMITS TEST RESULTS	FIGURE
PROJECT NO.	DATE	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - NICARAGUA DRIVE	B_ 2
604817001	12/15		D-Z

APPENDIX C

PAVEMENT AND CORE SUMMARY

TUCSON PAVEMENT REHABILITATION PROGRAM - FY 16

No.	Location	Approximate AC thickness (in)*	Recovered AC Thickness (in)	Core Description	Pavement Condition
B-1	Westbound, 250 feet east of Wilmot Road	4	4	Two lifts, 1.5" and 2.5", few voids.	Transverse, longitudinal and irregular cracking, some sealed, severe near Wilmot.
B-2	Eastbound, 80 feet east of Nastar Drive	3.5	3.5	Two lifts, 1.5" and 2", crack throughout core.	Transverse, longitudinal and irregular cracking, aligator cracks developing along wheel paths.

NICARAGUA DRIVE - PAVEMENT AND CORE SUMMARY

Notes:

* Measured in the boring

APPENDIX D

TRAFFIC DATA

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-001 Station ID: Wed 10/14/2015 Calle Polar btwn. Nicaragua Dr. & Barrow St. 32.179560, -110.853668 Latitude: 0' 0.000 Undefined

Northbound												La		Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	TIrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/14/15	0	18	3	0	0	0	0	0	0	0	0	0	0	21
01:00	0	5	2	0	0	0	0	0	0	0	0	0	0	7
02:00	0	11	1	0	0	0	0	0	0	0	0	0	0	12
03:00	0	24	6	0	0	0	0	0	0	0	0	0	0	30
04:00	0	60	16	0	1	0	0	0	0	0	0	0	0	77
05:00	1	208	82	1	4	0	0	0	0	0	0	0	0	296
06:00	2	352	122	2	1	0	0	2	2	0	0	0	0	483
07:00	3	499	95	1	3	0	0	1	1	0	2	0	0	605
08:00	4	330	53	0	1	1	0	1	0	0	0	0	1	391
09:00	1	250	61	0	1	0	0	1	2	0	0	0	0	316
10:00	1	192	60	3	2	0	0	0	0	0	0	1	0	259
11:00	0	232	55	0	4	0	0	2	1	1	0	1	0	296
12 PM	0	207	47	3	3	2	0	0	0	1	0	0	1	264
13:00	0	212	51	2	4	3	0	2	1	2	1	1	1	280
14:00	1	209	49	1	1	1	0	1	1	0	2	0	2	268
15:00	1	191	43	7	0	1	0	0	0	1	1	0	1	246
16:00	1	182	39	3	0	0	0	1	2	0	1	0	0	229
17:00	1	199	34	1	6	1	0	0	0	0	0	1	1	244
18:00	2	162	31	4	0	4	0	0	0	0	0	0	0	203
19:00	0	114	20	1	3	1	0	0	1	0	0	0	0	140
20:00	0	60	13	1	0	0	0	0	0	0	0	0	0	74
21:00	0	47	5	2	1	0	0	0	0	0	0	0	0	55
22:00	0	47	2	0	0	0	0	0	0	0	0	0	0	49
23:00	0	22	6	0	0	0	0	0	0	0	0	0	0	28
Day	18	3833	896	32	35	1/	٥	11	11	5	7	1	7	1873
Total	10	5055	030	52	55	14	0			5	,	-	,	4075
Percent	0.4%	78.7%	18.4%	0.7%	0.7%	0.3%	0.0%	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%	
AM Peak	08:00	07:00	06:00	10:00	05:00	08:00		06:00	06:00	11:00	07:00	10:00	08:00	07:00
Vol.	4	499	122	3	4	1		2	2	1	2	1	1	605
PM Peak	18:00	13:00	13:00	15:00	17:00	18:00		13:00	16:00	13:00	14:00	13:00	14:00	13:00
Vol.	2	212	51	7	6	4		2	2	2	2	1	2	280
- ·														
Grand	18	3833	896	32	35	14	0	11	11	5	7	4	7	4873
Iotal	0.40/	70 70	10 10	0.70/	0.70/	0.00/	0.001	0.001	0.001	0.401	0.40/	0.40/	0.40/	-
Percent	0.4%	18.1%	18.4%	0.7%	0.7%	0.3%	0.0%	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-001 Station ID: Wed 10/14/2015 Calle Polar btwn. Nicaragua Dr. & Barrow St. 32.179560, -110.853668 Latitude: 0' 0.000 Undefined

Southbound												La		Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/14/15	0	31	11	0	0	0	0	0	0	0	0	0	0	42
01:00	0	18	1	0	0	0	0	0	0	0	0	0	0	19
02:00	0	18	3	0	0	0	0	0	0	0	0	0	0	21
03:00	1	14	3	0	0	0	0	0	0	0	0	0	0	18
04:00	0	21	7	0	0	0	0	0	0	0	0	0	0	28
05:00	0	52	18	1	1	0	1	0	0	0	0	0	0	73
06:00	1	95	33	3	3	0	0	0	2	0	0	1	2	140
07:00	0	145	43	4	0	1	1	1	0	0	0	0	1	196
08:00	1	134	27	2	1	0	1	0	3	1	0	0	0	170
09:00	0	153	30	2	0	0	0	1	2	0	0	2	1	191
10:00	0	191	39	2	1	0	1	3	2	0	1	0	1	241
11:00	2	250	65	1	4	1	0	2	1	0	2	0	1	329
12 PM	0	289	64	0	4	0	1	0	2	0	1	0	0	361
13:00	1	283	66	2	2	0	0	0	1	0	2	1	0	358
14:00	1	373	91	4	6	1	0	3	1	0	1	0	0	481
15:00	0	454	143	3	5	0	1	4	5	1	2	1	2	621
16:00	2	580	156	4	2	0	1	2	1	0	4	1	2	755
17:00	0	535	114	3	3	0	1	4	0	1	5	0	1	667
18:00	1	370	60	2	0	1	1	1	0	1	2	2	1	442
19:00	0	272	55	0	2	0	1	0	0	2	0	0	0	332
20:00	0	253	57	0	0	0	0	1	0	0	0	1	1	313
21:00	0	168	27	0	0	1	0	0	0	0	0	0	0	196
22:00	0	102	26	0	0	0	0	0	0	0	0	0	0	128
23:00	0	65	10	0	0	0	0	0	0	0	0	0	0	75
Day	10	4866	11/0	33	34	5	10	22	20	6	20	0	13	6107
Total	10	4800	1149		54	5	10	22	20	0	20	9	15	0197
Percent	0.2%	78.5%	18.5%	0.5%	0.5%	0.1%	0.2%	0.4%	0.3%	0.1%	0.3%	0.1%	0.2%	
AM Peak	11:00	11:00	11:00	07:00	11:00	07:00	05:00	10:00	08:00	08:00	11:00	09:00	06:00	11:00
Vol.	2	250	65	4	4	1	1	3	3	1	2	2	2	329
PM Peak	16:00	16:00	16:00	14:00	14:00	14:00	12:00	15:00	15:00	19:00	17:00	18:00	15:00	16:00
Vol.	2	580	156	4	6	1	1	4	5	2	5	2	2	755
.														
Grand	10	4866	1149	33	34	5	10	22	20	6	20	9	13	6197
Iotal	0.00/	70 50/	40 50/	0 50/	0 50/	0.40/	0.00/			0.401		0.40/	0.00/	
Percent	0.2%	78.5%	18.5%	0.5%	0.5%	0.1%	0.2%	0.4%	0.3%	0.1%	0.3%	0.1%	0.2%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

> Site Code: 15-1283-001 Station ID: Wed 10/14/2015 Calle Polar btwn. Nicaragua Dr. & Barrow St. 32.179560, -110.853668 Latitude: 0' 0.000 Undefined

Northbound. Southbound Cars & 2 Axle 2 Axle 3 Axle 4 Axle <5 Axle 5 Axle <6 Axle 6 Axle >6 Axle Start >6 Axle Time Bikes TIrs Lona Buses 6 Tire Sinale Sinale Double Double Double Multi Multi Multi Total 10/14/15 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12 PM 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 Dav Total Percent 0.3% 78.6% 18.5% 0.6% 0.6% 0.2% 0.1% 0.3% 0.3% 0.1% 0.2% 0.1% 0.2% AM Peak 08:00 07:00 06:00 06:00 11:00 07:00 05:00 11:00 06:00 08:00 07:00 09:00 06:00 07:00 Vol. PM Peak 16:00 16:00 16:00 15:00 17:00 18:00 12:00 14:00 15:00 13:00 16:00 13:00 15:00 16:00 Vol. Grand Total 0.3% 78.6% 18.5% 0.6% 0.6% 0.2% 0.1% 0.3% 0.3% 0.1% 0.2% 0.1% 0.2% Percent

APPENDIX E

PAVEMENT OPTIMIZATION DESIGN ANALYSIS BY TENSAR

SpectraPave4 PRO[™] Pavement Optimization Design Analysis

Design Parameters for AASHTO (1993) Equation

Reliability (%)	= 95	Initial Serviceability	= 4.5
Standard Normal Deviate	= -1.645	Terminal Serviceability	= 2.5
Standard Deviation	= 0.40	Change in Serviceability	= 2

Aggregate fill shall conform to following requirement:

D50 <= 27mm (Base course)

Unstabilized Section Material Properties

Tensar

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
ABC	Aggregate Base Course	20	0.140	1.25

Unstabilized Pavement

Stabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
MSL	Mechanically Stabilized Base Cour	20	0.318	1.25

ACC1 ACC1 6.00 (in) **MSL** Tensar TX7 (Overlap=1.0ft) ABC 7.00 (in) Subgrade Modulus = 8,824 (psi) Subgrade Modulus = 8,824 (psi) Structural Number = 3.865 Structural Number = 4.188 Calculated Traffic (ESALs) = 2,952,000 LIMITATIONS OF THE REPORT The designs, illustrations, information and other content included in this report are necessarily general and conceptual in nature, and do not constitute engineering advice or any design intended for actual construction. Specific design recommendations can be provided as the project develops.

Project Name Nicaragua Drive **Company Name** Tensar 12/14/15 Designer Schlessinger Date

This document was prepared using SpectraPave4 PRO™ Software Version 4.6.1 Developed by Tensar International Corporation Copyright 1998 - 2014, All Rights Reserved.

Stabilized Pavement

Calculated Traffic (ESALs) = 5,075,000

PAVEMENT EVALUATION TUCSON PAVEMENT RECONSTRUCTION PROGRAM PIMA STREET TUCSON, ARIZONA

PREPARED FOR:

Kimley-Horn & Associates, Inc. 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

PREPARED BY:

Ninyo & Moore Geotechnical and Environmental Sciences Consultants 1991 East Ajo Way, Suite 145 Tucson, Arizona 85713

> December 16, 2015 Project No. 604817002

1991 East Ajo Way, Suite 145 • Tucson, Arizona 85713 • Phone (520) 577-7600 • Fax (520) 577-7606

December 16, 2015 Project No. 604817002

Mr. Rick Solis, P.E. Kimley-Horn 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

Subject: Pavement Evaluation Tucson Pavement Reconstruction Program – Pima Street Tucson, Arizona

Dear Mr. Solis:

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, Ninyo & Moore has performed a pavement evaluation for the above-referenced site. The attached report presents our methodology, findings, conclusions, and recommendations regarding the geotechnical conditions at the project site.

We appreciate the opportunity to be of service to you during this phase of the project.

Sincerely, **NINYO & MOORE**

Marek J. Kasztalski, PE, PMP, LEED AP Senior Geotechnical Engineer EXPIRES 15018

Fred Narcaroti Principal/Tucson Office Manager

MJK/DT/FFN/tlp

Distribution: (1) Addressee (Electronic Copy)

TABLE OF CONTENTS

Page

1.	INTRODUCTION
2.	SCOPE OF SERVICES
3.	SITE DESCRIPTION
4.	PROPOSED CONSTRUCTION
5.	EXISTING PAVEMENT CONDITION
6.	FIELD EXPLORATION AND LABORATORY TESTING
7	SUBSURFACE CONDITIONS
7.	7.1. Asphaltic Concrete
	7.2. Alluvium
8.	CONCLUSIONS
9.	RECOMMENDATIONS
	9.1. Recommended Pavement Treatment
	9.1.1. Full-Depth Reconstruction
	9.1.2. Mill and Overlay
	9.2. Earthwork
	9.2.1. Site Preparation
	9.2.2. Excavations7
	9.2.3. Fill Materials7
	9.2.4. Grading and Subgrade Preparation7
	9.3. Pavement Design Summary
	9.3.1. Traffic
	9.3.2. R-Value and Resilient Modulus
	9.3.3. Statistical Parameters
	9.3.4. Serviceability Index
	9.3.5. Layer Coefficients10
	9.3.6. Asphalt Pavement Section Recommendations11
10.	MILL AND OVERLAY
11.	SITE DRAINAGE
12.	PRE-CONSTRUCTION CONFERENCE
13.	CONSTRUCTION OBSERVATION AND TESTING13
14.	LIMITATIONS
15.	REFERENCES

<u>Tables</u>

Table 1 – R-value Summary	9
Table 2 – Summary of Statistical Parameters	10
Table 3 – Summary of Serviceability Parameters	10
Table 4 – Structural Pavement Sections for 20-Year Design Life	11

Figures

Figure 1 – Site Location Figures 2A and 2B – Boring Locations

Appendices

Appendix A – Boring Logs

Appendix B – Laboratory Testing

Appendix C – Pavement and Core Summary

Appendix D – Traffic Data

Appendix E – Pavement Optimization Design Analysis by Tensar

1. INTRODUCTION

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, we have performed a pavement evaluation for the Pima Street Pavement Reconstruction project between Country Club Road and Columbus Boulevard, in Tucson, Arizona. The purpose of our evaluation was to assess the pavement and subgrade conditions along the project alignment in order to provide geotechnical recommendations for design and construction. This report presents the results of our evaluation, conclusions, and recommendations regarding the proposed construction.

2. SCOPE OF SERVICES

The scope of our services generally included:

- Preparing a field testing plan and associated permit application for submittal to the City of Tucson (COT).
- Conducting a visual reconnaissance of the pavement along the alignment and marking out the boring locations.
- Notifying Arizona811 of our boring locations prior to conducting the field work.
- Arranging for traffic control measures to conduct the field work.
- Coring the existing asphaltic concrete (AC) pavement at eight locations along the project alignment.
- Exploring the subsurface soils within the project limits by drilling, logging, and sampling eight exploratory soil borings to approximate depths of 3 feet below ground surface (bgs). The boring logs are presented in Appendix A.
- Performing laboratory tests on selected samples collected from our borings to evaluate gradation and Atterberg limits. The results of the laboratory tests are included in Appendix B.
- Preparing this report presenting our findings, conclusions and recommendations regarding the proposed reconstruction.

Our scope of services did not include environmental consulting services such as hazardous waste sampling or analytical testing at the site. A detailed scope of services and estimated fee for such services can be provided upon request.

3. SITE DESCRIPTION

The project site is located in Sections 3 and 4 of Townships 14 South, Range 14 East relative to the Gila and Salt River Base Line and Meridian. The project alignment extends along Pima Street between Country Club Road and Columbus Boulevard, in Tucson, Arizona (Figure 1).

At the time of our evaluation residential developments existed along the project alignment. The roadway section consisted of one travel lane in each direction, a center lane, concrete sidewalks on the north side of the roadway, and concrete curb.

4. **PROPOSED CONSTRUCTION**

The COT has identified several segments of the existing street network for reconstruction and/or rehabilitation in fiscal year (FY) 2016 under Bid Package 2. The scope of this report includes Pima Street between Country Club Road and Columbus Boulevard. The project alignment is approximately1 ¹/₂ miles long.

We understand that the COT anticipates the following treatments:

- Between Country Club Road and Dodge Boulevard and between Alvernon Way and Columbus Boulevard: full-depth reconstruction of the existing roadway consisting of 5 inches of AC per of the COT Department of Transportation Standard Specifications Section 406 over 5 inches of aggregate base (AB) per Section 303 of the COT Standard Specifications.
- Between Dodge Boulevard and Alvernon Way: milling 3 inches of the existing pavement, placing ¹/₂-inch thick Asphalt Rubber Stress Absorbing Membrane (SAME) and overlaying with 2 ¹/₂ inches of AC.

We further understand that the COT intends to use Tucson Department of Transportation (TDOT) AC Mix No. 2 PG 76-22TR+ for the surface layers and TDOT AC Mix No. 1 PG 70-10 for the underlying layer. The AC layers will be 2.5 inches thick.

Due to conflicts with shallow utility lines, subgrade improvement by overexcavation will not be performed and the new pavement section will be constructed on subgrade improved with Geogrid (Tensar Geogrid TX5 or equivalent).

The scope of this exploration included evaluation of the existing pavement section and subgrade soils in order to provide recommendations for pavement reconstruction in accordance with the current COT practice. Calculations for the new pavement section supporting the new construction proposed by the COT are presented in Section 9.3 and in Appendix E of this report.

5. EXISTING PAVEMENT CONDITION

On October 2, 2015, Ninyo & Moore conducted a limited visual evaluation of the pavement surface along the project alignment. Based on our field observations, the AC pavement exhibited signs of severe distress in many locations along the project alignment primarily consisting of extensive alligator, block, transverse and irregular cracking with considerable spalling, rutting in both wheel tracks, flushing and potholes. Some of the cracks exhibited evidence of past sealing. Asphaltic concrete patches were observed at some locations which were probably associated with past maintenance efforts (pothole and crack repairs) or with underground utility work. The crack widths generally varied between hairline (less than 1/8-inch) and over one inch.

In our opinion, the distress observed along the project alignment indicates structural failure and is related to a combination of pavement age, subgrade condition, traffic, and environmental impacts.

6. FIELD EXPLORATION AND LABORATORY TESTING

On October 2, 2015, Ninyo & Moore conducted a geotechnical exploration in order to evaluate the subsurface conditions and collect AC cores and soil samples for laboratory testing. Our evaluation consisted of coring the existing AC pavement, drilling, logging, and sampling eight small-diameter borings, denoted as B-1 through B-8, utilizing a CME-45 truck-mounted drill rig equipped with hollow-stem augers. The borings extended to depths of approximately 3 feet bgs. The approximate locations of the borings are depicted on Figures 2A and 2B.

Ninyo & Moore personnel logged the borings in general accordance with the Unified Soil Classification System (USCS) and American Society for Testing and Materials (ASTM) D 2488 by observing cuttings and drive samples. Collected ring samples were trimmed in the field, wrapped in plastic bags, and placed in cylindrical plastic containers to retain in-place moisture conditions.

The soil samples collected from our drilling activities were transported to the Ninyo & Moore laboratory in Tucson, Arizona for geotechnical laboratory testing. The tests included gradation and Atterberg limits. A description of each laboratory test method and the test results are presented in Appendix B.

7. SUBSURFACE CONDITIONS

Our knowledge of the subsurface conditions at the project site is based on our field exploration, laboratory testing, and general experience in the area. More detailed stratigraphic information is presented on the boring logs in Appendix A, attached to this report. The boring logs contain our field and laboratory test results, as well as our interpretation of conditions believed to exist between actual samples retrieved. Therefore, these boring logs contain both factual and interpretive information. Lines delineating subsurface strata on the boring logs are intended to group soils having similar engineering properties and characteristics. They should be considered approximate as the actual transition between soil types (strata) may be gradual. A key to the soil symbols and terms used on the boring logs is provided in Appendix A.

7.1. Asphaltic Concrete

Asphaltic concrete pavement was encountered at the surface of each of our borings. The AC thickness varied between approximately 2 ¹/₂ to 7 inches, in our borings. It should be noted that the thickness of the AC pavement between the sampling locations may vary and could be different from that encountered at our sampling locations. Detailed core descriptions are presented in Appendix C.

inyo & Moo

Aggregate base was observed in some of our borings and its thickness varied between 2 and 4 inches. It is possible the AB material blended with the native subgrade soils, such that delineation of the AB/subgrade interface was not easily interpreted.

7.2. Alluvium

Native alluvial soils were encountered below the pavement section, and extended to the boring termination depths. The alluvium generally consisted of loose to medium dense, low to high plasticity clayey sands with varying amounts of gravel in our borings.

8. CONCLUSIONS

Based on the results of our visual and subsurface evaluations, laboratory testing, and data analysis, geotechnical considerations include the following:

- The on-site soils generally include clayey sand, with a plasticity index (PI) value varying between 11 and 35. Many on-site soils may be sensitive to moisture content fluctuations and may be difficult to compact especially at higher moisture contents. The contractor should be aware of this condition.
- Clayey sands of high plasticity were encountered in our borings.
- Due to the relatively widely spaced nature of our borings, soil conditions may differ from what was observed during our field exploration.
- The pavement exhibits significant distress in many locations along the project alignment consisting mainly of alligator, block, transverse and irregular cracking with considerable spalling, rutting in both wheel tracks, flushing and potholes.

9. **RECOMMENDATIONS**

The following sections present our geotechnical recommendations for the project. If the proposed construction is changed from that discussed in this report, Ninyo & Moore should be contacted for additional recommendations.

9.1. Recommended Pavement Treatment

The recommended pavement treatments are briefly summarized below.

9.1.1. Full-Depth Reconstruction

Full depth reconstruction is recommended between Country Club Road and Dodge Boulevard and between Alvernon Way and Columbus Boulevard. The recommended pavement sections are presented in the table below:

Pavement Section	Service Life (years)	AC (in) ¹	$AB (in)^2$	
COT Preferred Pavement with Geogrid	20	5	5	
Alternative Pavement Section without Geogrid	20	5.5	7	
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.				

9.1.2. Mill and Overlay

Milling 3 inches of the existing pavement, placing ¹/₂-inch thick Asphalt Rubber SAME and overlaying with 2 ¹/₂ inches of AC is recommended for the project segment between Dodge Boulevard an Alvernon Way.

9.2. Earthwork

The following sections provide our earthwork recommendations for this project. In general, the earthwork specifications contained in the *City of Tucson/Pima County Standard Specifications for Public Improvements, 2003 Edition (COT/PC Specifications)* are expected to apply unless specifically noted.

9.2.1. Site Preparation

Construction areas should be cleared of deleterious materials, if any are present, including abandoned utilities, construction debris, vegetation, and any other material that might interfere with the performance or progress of the work. These materials should be disposed of at a legal dumpsite. Existing features that call for relocation or

removal and extend below finish grade, if present, should be removed, and the resulting excavations backfilled with engineered fill.

9.2.2. Excavations

Our evaluation of the excavation characteristics of the on-site soils is based on the results of our exploratory borings, site observations, and experience with similar materials.

9.2.3. Fill Materials

Soils with PI values of 15 or less (as evaluated by ASTM D 4318) are generally suitable for use as engineered fill. Our Atterberg limits tests indicated PI values ranging between 11 and 35. Based on these test results, many of the on-site soils are not suitable for reuse as engineered fill.

Engineered fill should not include organic material, construction debris, or other nonsoil fill materials. Rock particles and clay lumps should not be larger than 4 inches in dimension. Unsuitable material should be disposed of off-site or in non-structural areas.

9.2.4. Grading and Subgrade Preparation

In general, grading operations should be performed in accordance with Section 205 of the COT/PC Specifications.

Due to potential conflicts with underground utilities, we recommend that the subgrade beneath new pavements be improved by the application of Geogrid (Tensar Geogrid TX5 or equivalent). Geogrid should be placed in accordance with the manufacturer's instructions.

Alternatively, if Geogrid is not applied we recommend new pavements be supported on 6 inches of subgrade that is compacted by appropriate mechanical methods to a relative compaction of 95 percent as evaluated by ASTM D 698 at a moisture content generally

near optimum. The thickness of the improvement zone should be measured from the bottom of the AB layer.

In areas where excessive moisture is encountered so that the above compaction cannot be achieved and/or the subgrade surface is unstable and yielding (pumping) under the roller wheels, subgrade soils should be scarified to a depth of 12 inches, aerated, and recompacted as specified above. Alternatively, subgrade soils in problem areas should be and replaced with engineered fill to a depth of 12 inches below the bottom of the AB.

9.3. Pavement Design Summary

The following sections present our design assumptions and recommendations for the new flexible pavement section of Pima Street between Country Club Road and Dodge Boulevard and between Alvernon Way and Columbus Boulevard, as this roadway is scheduled for full-depth pavement reconstruction.

The pavement section was developed using the Active Practices Guidelines issued by the COT Department of Transportation (Guidelines) and the Arizona Department of Transportation (ADOT) Preliminary Engineering and Design Manual (PEDM). We assumed that the subgrade will be improved by the application of Geogrid or overexcavation, as outlined in Section 9.2.4 of this report. The new pavement sections are designed for a 20-year service life.

9.3.1. Traffic

The future traffic numbers used in this report are based on traffic counts provided by Kimley-Horn and Associates, Inc. (KHA), and later communication with the KHA. This information is presented in Appendix D. Based on the above information, and using the procedures outlined in the Guidelines and PEDM, the design number of equivalent single axle loads (ESALs) for the design lane during the 20-year design period was calculated as approximately 1,546,140.

Inyo & ____00

9.3.2. R-Value and Resilient Modulus

The analysis for the design R-value for the pavement section has been performed based on procedures detailed in the Guidelines and the PEDM, using correlated R-values. The correlated R-values were derived from the PI and percent passing No. 200 Sieve test results. A summary of the R-values for this project is presented in Table 1 below:

Location	Sample Depth (ft)	Correlated R-Value
B-1	1.5-3.0	19
B-3	1.5-3.0	32
B-5	1.5-3.0	55
B-7	1.5-3.0	13

Table 1 – R-value Summary

In the interest of conservatism, we recommend that an R-value of 20 be used for pavement design for this project.

If the project needs fill from an off-site source, we recommend the soils used for subgrade support should have an R-value of 20 or more. If during construction, the subgrade is found to vary from the expected soil conditions, we should be contacted so we may re-evaluate our recommended R-values. Based on the above design R-values, the design subgrade resilient modulus (M_R) value of 8,824 pounds per square inch (psi) was calculated in accordance with the Guidelines.

9.3.3. Statistical Parameters

A standard deviation of 0.40 was used for design of the flexible pavement in accordance with the Guidelines. The level of reliability and standard normal deviation (Z_R) values were selected in accordance with the Guidelines for the arterial functional classification. Their respective values are presented in the table below:

Roadway	Functional Classification	Standard Deviation	Level of Reliability	Standard Normal Deviation
Pima Street	Arterial	0.40	95 %	-1.645

 Table 2 – Summary of Statistical Parameters

9.3.4. Serviceability Index

Initial and terminal serviceability indices were selected for the pavement design of the roadways in accordance with the Guidelines. A summary of the serviceability indices for each roadway is provided in the table below:

Roadway	Functional Classification	Initial Serviceability Index	Terminal Serviceability Index	Change in Serviceability
Pima Street	Arterial	4.5	2.5	2.0

 Table 3 – Summary of Serviceability Parameters

9.3.5. Layer Coefficients

The following structural coefficients were used for the pavement structure in accordance with the Guidelines:

- AC: 0.44.
- AB: 0.14.

A drainage coefficient of 1.25 was used for the AB coefficient as recommended in the Guidelines.

As mentioned in Section 4 above, due to conflicts with existing shallow utilities, it is recommended that the subgrade be improved using Geogrid (Tensar Geogrid TX5 or equivalent). In this case the AB layer coefficient is 0.289.

9.3.6. Asphalt Pavement Section Recommendations

The structural number (SN) was calculated based on the parameters described above. The table below presents the calculated SN value and the recommended structural pavement sections. The AC thickness meets the COT requirements. Supporting documentation of the pavement optimization design using Geogrid is presented in Appendix E:

Roadway	SN	$AC (in)^1$	AB $(in)^2$	
COT Preferred Pavement with Geogrid	4.01	5	5	
Alternative Pavement without Geogrid	3.50	5.5	7	
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.				

 Table 4 – Structural Pavement Sections for 20-Year Design Life

The above pavement structural section has been designed with the assumption that the subgrade is prepared by as recommended in Section 9.2.4.

10. MILL AND OVERLAY

We understand the COT is anticipating a mill and overlay pavement rehabilitation for the project segment between Dodge Boulevard and Alvernon Way. It is anticipated that this treatment will include:

- Milling 3 inches of the existing AC.
- Sealing the cracks at the surface.
- Placing a ¹/₂-inch thick SAME membrane.
- Placing an overlay of a new AC that is 2 ¹/₂ -inches thick using TCOT Mix No. 2 PG 76-22TR+.

In our opinion, the treatment proposed by the COT is feasible. However, it is important that after milling and prior to the overlay, the pavement surface be cleaned of any debris using mechanical sweepers or similar equipment and carefully inspected for distress. Cracks wider than 1/8-inch should be sealed with an approved sealant and cracks wider than 1½-inches should be sealed with AC mix No. 3 (per Section 406 of the COT/PC Specifications). In areas where following the milling operation structural failure or disintegration is observed on the exposed AC surface, the affected areas should be removed and replaced with a new pavement section, as defined in Section 9, above. Such areas are typically characterized by extensively cracked, disintegrated, yielding and/or otherwise unstable AC.

Based on the previously discussed future traffic data and our experience with similar pavement rehabilitation projects within the Tucson Metro Area, we estimate that the service life of the milled and overlaid pavement will be on the order of 15 to 20 years. This service life includes the beneficial effect of SAME, which is anticipated to defer propagation of the cracks to the pavement surface.

11. SITE DRAINAGE

Surface drainage should be provided to divert water away from paved surfaces. Surface water should also not be permitted to pond on or below pavement areas. Positive drainage for this project is defined as a slope of 2 percent or more for a distance of 5 feet or more away from the pavements. To deter accumulation of water below the new pavement sections, the bottom of the overexcavated zone below the new pavement should be sloped toward the edges of the roadway.

12. PRE-CONSTRUCTION CONFERENCE

We recommend that a pre-construction conference be held. Representatives of the owner, the civil engineer, Ninyo & Moore, and the contractor should be in attendance to discuss the project plans and schedule. Our office should be notified if the project description included herein is incorrect or if the project characteristics are significantly changed.

13. CONSTRUCTION OBSERVATION AND TESTING

During construction operations, we recommend that Ninyo & Moore perform observation and testing services for the project. These services should be performed to evaluate exposed subgrade conditions, including the extent and depth of overexcavation, to evaluate the suitability of proposed borrow materials for use as engineered fill and to observe placement and test compaction of fill soils. Qualified subcontractors utilizing appropriate techniques and construction materials should perform construction of the proposed improvements.

14. LIMITATIONS

The field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation will be performed upon request. Please also note that our evaluation was limited to assessment of the geotechnical aspects of the project, and did not include evaluation of structural issues, environmental concerns, or the presence of hazardous materials.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document.

This report is intended for design purposes only. It does not provide sufficient data to prepare an accurate bid by contractors. It is suggested that the bidders and their geotechnical consultant perform an independent evaluation of the subsurface conditions in the project areas. The independent evaluations may include, but not be limited to, review of other geotechnical reports

prepared for the adjacent areas, site reconnaissance, and additional exploration and laboratory testing.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are encountered, our office should be notified and additional recommendations, if warranted, will be provided upon request. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

15. REFERENCES

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards.

- Arizona Department of Transportation (ADOT), 1989, Preliminary Engineering and Design Manual, Materials Section, 3rd Edition: dated March.
- City of Tucson, Arizona, Department of Transportation, Engineering Division, 1987, Active Practices Guidelines: dated June 1.

Ninyo & Moore, In-house proprietary information.

	<i>Ninyo</i> & Moore		BORING LOCATIONS	FIGURE
ApproximateScale: 1 inch = 550 feet Note: Dimensions, directions, and locations are approximate.	PROJECT NO: 604817002	DATE: 12/15	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - PIMA STREET TUCSON, ARIZONA	2A

T T

	Ninyo «	Moore	BORING LOCATIONS	FIGURE
Approximate Scale: 1 inch = 550 feet Note: Dimensions, directions, and locations are approximate.	PROJECT NO: 604817002	DATE: 12/15	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - PIMA STREET TUCSON, ARIZONA	2B
APPENDIX A

BORING LOGS

Field Procedure for the Collection of Relatively Undisturbed Samples

Relatively undisturbed soil samples were obtained in the field using the following methods.

The Modified Split-Barrel Drive Sampler

The sampler, with an external diameter of 3.0 inches, was lined with 1-inch long, thin brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a hammer or the Kelly bar of the drill rig in general accordance with ASTM D 3550. The driving weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer or bar, and the number of blows per foot of driving are presented on the boring logs as an index to the relative resistance of the materials sampled. The samples were removed from the sample barrel in the brass rings, sealed, and transported to the laboratory for testing.

		SSIFICATION	СН	GRAIN SIZE									
DD				SECON	DARY DIVISIONS		DESC		SIEVE	GRAIN	APPROXIMATE		
		510113	GR	OUP SYMBOL	GROUP NAME		DESCI		SIZE	SIZE	SIZE		
		CLEAN GRAVEL		GW	well-graded GRAVEL		Во	ulders	> 12"	> 12"	Larger than		
		less than 5% fines		GP	poorly graded GRAVEL						Dasketball-sized		
	GRAVEI			GW-GM	well-graded GRAVEL with silt		Co	bbles	3 - 12"	3 - 12"	Fist-sized to basketball-sized		
	more than	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt								
	coarse	CLASSIFICATIONS 5% to 12% fines		GW-GC	well-graded GRAVEL with clay			Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized		
	retained on No. 4 sieve			GP-GC	poorly graded GRAVEL with clay		Gravel				Pag sized to		
		GRAVEL with FINES more than		GM	silty GRAVEL			Fine	#4 - 3/4"	0.19 - 0.75"	thumb-sized		
COARSE- GRAINED				GC	clayey GRAVEL			0	#40 #4	0.070 0.40"	Rock-salt-sized to		
SOILS		12% fines		GC-GM	silty, clayey GRAVEL			Coarse	#10 - #4	0.079 - 0.19" Rock-salt-sized to pea-sized 0.017 - 0.079" Sugar-sized to rock-salt-sized			
50% retained on No. 200 sieve		CLEAN SAND		SW	well-graded SAND		Sand	Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to		
		less than 5% fines		SP	poorly graded SAND						E APPROXIMATE AIN APPROXIMATE 12" Larger than basketball-sized 12" Fist-sized to basketball-sized 12" Fist-sized to fist-sized to fist-sized to thumb-sized to pea-sized 0.75" Pea-sized to pea-sized to rock-salt-sized 0.079" Sugar-sized to sugar-sized to sugar-sized 0.079" Flour-sized to sugar-sized to sugar-sized 029" Flour-sized and smaller HART MH or OH Image: Sugar Su		
				SW-SM	well-graded SAND with silt			Fine	#200 - #40	0.0029 -	Flour-sized to		
	SAND 50% or more	SAND with DUAL		SP-SM	poorly graded SAND with silt					0.017	3ugar-3izeu		
	of coarse fraction passes No. 4 sieve	CLASSIFICATIONS 5% to 12% fines		SW-SC	well-graded SAND with clay		F	nes	Passing #200	< 0.0029"	Flour-sized and smaller		
				SP-SC	poorly graded SAND with clay								
		SAND with FINES more than 12% fines		SM	silty SAND PLASTICITY CHART						•		
				SC	clayey SAND								
				SC-SM	silty, clayey SAND		7						
				CL	lean CLAY		° 6						
	SILT and	INORGANIC		ML	SILT		(Id) 5						
	CLAY liquid limit			CL-ML	silty CLAY			D		CH or OF			
FINE-	less than 50%	OBCANIC		OL (PI > 4)	organic CLAY		≚ 3	p					
SOILS		ORGANIC		OL (PI < 4)	organic SILT			D	CL or (WH or OH		
50% or				СН	fat CLAY		I SV 1						
No. 200 sieve	SILT and CLAY	INORGANIC		MH	elastic SILT			CL-ML ML or OL					
	liquid limit 50% or more	OPCANIC		OH (plots on or above "A"-line)	organic CLAY						80 90 100		
		URGANIC		OH (plots below "A"-line)	organic SILT				LIQUID	LIMIT (LL), %			
	Highly C	Organic Soils		PT	Peat								

APPARENT DENSITY - COARSE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
DENSITY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Loose	≤4	≤ 8	<u>≤</u> 3	≤ 5		
Loose	5 - 10 9 - 21		4 - 7	6 - 14		
Medium Dense	11 - 30	22 - 63	8 - 20	15 - 42		
Dense	31 - 50	64 - 105	21 - 33	43 - 70		
Very Dense	> 50	> 105	> 33	> 70		

Ninyo & Moore

CONSISTENCY - FINE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
CONSIS- TENCY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Soft	< 2	< 3	< 1	< 2		
Soft	2 - 4	3 - 5	1 - 3	2 - 3		
Firm	5 - 8	6 - 10	4 - 5	4 - 6		
Stiff	9 - 15	11 - 20	6 - 10	7 - 13		
Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26		
Hard	> 30	> 39	> 20	> 26		

USCS METHOD OF SOIL CLASSIFICATION

Explanation of USCS Method of Soil Classification DATE

DEPTH (feet)	Bulk SAMPLES	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BORING LOG EXPLANATION SHEET						
0							Bulk sample.						
							Modified split-barrel	drive sampler. lified split-barrel dri	ve samnler				
									ve sampler.				
							Sample retained by others.						
							Standard Penetration	Standard Penetration Test (SPT).					
5 -	\Box						No recovery with a SI	PT.					
		XX/XX					Shelby tube sample. Distance pushed in inches/length of sample recovered in inches.						
							No recovery with Shelby tube sampler.						
							Continuous Push Sample.						
			Ş				Seepage.						
10-			ļi. ₩ļi				Groundwater encount Groundwater measure	ered during drilling.					
						-							
						SM	MAJOR MATERIAL Solid line denotes uni	<u>TYPE (SOIL)</u> : t change.					
						CL	Dashed line denotes n	naterial change.					
							Attitudes: Strike/Dip						
							c: Contact						
15 -							J: Joint f: Fracture						
							F: Fault						
							s: Shear						
	$\left \right $						bss: Basal Slide Surfa	ce					
							sz: Shear Zone						
							sbs: Shear Bedding Surface						
							The total depth line is	a solid line that is d	rawn at the bottom of	the boring.			
20							<u> </u>		BORINGLOG	<u> </u>			
			\overline{n}		&	AAn	nre		Explanation of Boring Log Sy	mbols			
			Э					PROJECT NO.	DATE	FIGURE			

			,F)		7	DATE DRILLED10/02/15BORING NOB-1						
set)	TOC	: (%)	Y (PC	۲	ATION	GROUND ELEVATION 2,449' ± (MSL) SHEET 1 OF 1						
TH (ft	VS/FC	TURE	NSIT	MBO	S.C.S	METHOD OF DRILLING CME-45 Hollow-Stem Auger (Southlands)						
DEP	BLOV	SIOW		S	LASS	DRIVE WEIGHT 140 lbs. Automatic DROP 30"						
			DR		0	SAMPLED BY NAG LOGGED BY NAG REVIEWED BY						
0						DESCRIPTION/INTERPRETATION						
				111	SC	AGGREGATE BASE: Approximately 3 inches thick.						
	16					<u>ALLUVIUM</u> : Brown, dry, medium dense, clayey SAND; few gravel.						
						Total Depth – 3 feet						
						Groundwater not encountered during drilling.						
						Backfilled and asphalt concrete patched on 10/02/15 shortly after completion of drilling.						
5	-					Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.						
	-					The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this e valuation. It is not sufficiently accurate for preparing construction bids and design documents.						
10	_											
	_											
	_											
15-												
	_											
	_											
		<u> </u>		1		BORING LOG						
	Mi			&		TUCSON PAVEMENT RECONSTRUCTION PROGRAM - PIMA STREET TUCSON, ARIZONA						
	- V	1	_			PROJECT NO. DATE FIGURE 604817002 12/15 A-1						

	10/02/15 BORING NO. B-2
GROUND ELEV	ATION2,447' ± (MSL) SHEET OF
	RILLING CME-45 Hollow-Stem Auger (Southlands)
	140 lbs. Automatic DROP 30"
SAMPLED BY	NAG LOGGED BY NAG REVIEWED BY
0 ASPHALT CON	DESCRIPTION/INTERPRETATION CRETE: Approximately 3 inches thick.
SC AGGREGATE E	ASE: Approximately 2 inches thick.
Brown, dry, med	ium dense, clayey SAND; trace gravel.
Total Denth – 3 f	eet.
Groundwater not	encountered during drilling.
Backfilled and as	phalt concrete patched on 10/02/15 shortly after completion of drilling.
5 - Notes:	
Groundwater, the due to seasonal v	ariations in precipitation and several other factors as discussed in the
report.	
The ground eleva of published map	tion shown above is an estimation only. It is based on our interpretations s and other documents reviewed for the purposes of this e valuation. It is
not sufficiently a	ccurate for preparing construction bids and design documents.
	BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM - PIMA STREET
	TUCSON, ARIZONA PROJECT NO. DATE FIGURE
	604817002 12/15 A-2

APLES)F)		Z	DATE DRILLED 10/02/15 BORING NO. B-3							
eet) SAN	ООТ	(%)	Y (PC	2	ATION.	GROUND ELEVATION 2,451' ± (MSL) SHEET 1 OF 1							
TH (f	NS/F0	TURE	NSIT	MBC	S.C.S	METHOD OF DRILLING CME-45 Hollow-Stem Auger (Southlands)							
DEP 3ulk riven	BLOV	MOIS	Y DE	Ś	.U U.	DRIVE WEIGHT 140 lbs. Automatic DROP 30"							
			DR		0	SAMPLED BY NAG LOGGED BY NAG REVIEWED BY							
0						DESCRIPTION/INTERPRETATION							
					SC	ALLUVIUM: Proven dry loose clever SAND: trees gravel							
						Biowii, dry, ioose, clayey SAIND, trace gravel.							
	11												
						Total Domth 2 fact							
						Groundwater not encountered during drilling.							
						Backfilled and asphalt concrete patched on 10/02/15 shortly after completion of drilling.							
5						Notes:							
						Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the							
						report.							
						The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is							
						not sufficiently accurate for preparing construction bids and design documents.							
10													
15													
20													
				1		BORING LOG							
		ΠĻ	Π	Sz 🖌	MQ	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - PIMA STREET TUCSON, ARIZONA							
	V				V -	PROJECT NO. DATE FIGURE 604817002 12/15 A-3							

PLES					DATE DRILLED 10/02/15 BORING NO. B-4
et) SAMF	OT (%)	(PCF		TION	GROUND ELEVATION 2,457' ± (MSL) SHEET 1 OF 1
H (fe	'S/FO	ISITY	MBOL	FICA.	METHOD OF DRILLING CME-45 Hollow-Stem Auger (Southlands)
DEPI	3LOM		SΥ	ASS- U.S	DRIVE WEIGHT 140 lbs. Automatic DROP 30"
		DRY		CI	SAMPLED BY NAG LOGGED BY NAG REVIEWED BY
					DESCRIPTION/INTERPRETATION
				SC	AGGREGATE BASE: Approximately 4 inches thick.
				00	ALLUVIUM:
					Brown, moist, noise, crayey SAND, trace graver.
	11				
					Total Depth = 3 feet.
					Groundwater not encountered during drilling.
					Backfilled and asphalt concrete patched on 10/02/15 shortly after completion of drilling.
5					Notes:
					Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the
					report.
					The ground elevation shown above is an estimation only. It is based on our interpretations
					of published maps and other documents reviewed for the purposes of this e valuation. It is not sufficiently accurate for preparing construction bids and design documents.
10					
15					
		1	I		BORING LOG
	lin	10	&		TUCSON PAVEMENT RECONSTRUCTION PROGRAM - PIMA STREET TUCSON, ARIZONA
	7	/			PROJECT NO. DATE FIGURE
					604817002 12/15 A-4

	IPLES			F)		_	DATE DRILLED 10/02/15 BORING NO. B-5								
eet)	SAN	DOT	(%)	Y (PC		ATION .	GROUND ELEVATION 2,468' ± (MSL) SHEET 1 OF 1								
TH (fé		VS/FC	TURE	NSIT	MBO	CLASSIFIC, U.S.C.S	SIFIC,	S.C.S	S.C.S	S.C.S	SIFIC/	S.C.S	S.C.S	SIFIC/ S.C.S	METHOD OF DRILLING CME-45 Hollow-Stem Auger (Southlands)
DEP	3ulk riven	BLOV	MOIS	Y DE	S		DRIVE WEIGHT 140 lbs. Automatic DROP 30"								
				DR			SAMPLED BY NAG LOGGED BY NAG REVIEWED BY								
0							DESCRIPTION/INTERPRETATION ASPHALT CONCRETE: Approximately 7 1/2 inches thick.								
						SC	<u>AGGREGATE BASE</u> : Approximately 3 inches thick. <u>ALLUVIUM</u> :								
		20					Brown, dry, medium dense, clayey SAND; with gravel.								
							Total Depth – 3 feet								
							Groundwater not encountered during drilling.								
							Backfilled and asphalt concrete patched on 10/02/15 shortly after completion of drilling.								
5 -							Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level								
							due to seasonal variations in precipitation and several other factors as discussed in the report.								
							The ground elevation shown above is an estimation only. It is based on our interpretation								
							not sufficiently accurate for preparing construction bids and design documents.								
10 -															
-															
15 -															
20															
	<u> </u>						BORING LOG								
		V //	ΠЦ	ĮD «	Ŝ2	Ma	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - PIMA STREET TUCSON, ARIZONA								
		V				▼ [−]	PROJECT NO. DATE FIGURE 604817002 12/15 A-5								

MPLES			CF)		NO	DATE DRILLED BORING NO B-6						
feet)	001	E (%)	7 (P(Ы	S.	GROUND ELEVATION 2,461' ± (MSL) SHEET 1 OF 1						
TH (WS/F	TUR	LISN	Y MB(SIFIC S.C.S	METHOD OF DRILLING CME-45 Hollow-Stem Auger (Southlands)						
DEF	BLO	MOIS	ry de	ۍ ا	U UU	DRIVE WEIGHT 140 lbs. Automatic DROP 30"						
			DR		0	SAMPLED BY NAG LOGGED BY NAG REVIEWED BY						
0						DESCRIPTION/INTERPRETATION						
						AGGREGATE BASE: Approximately 2 inches thick.						
	_				SC	ALLUVIUM:						
						Brown, moist, loose, clayey SAND; few gravel.						
	11											
						Total Depth = 3 feet.						
						Groundwater not encountered during drilling.						
	-					Backfilled and asphalt concrete patched on 10/02/15 shortly after completion of drilling.						
5	-					Notes:						
						Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the						
						report.						
	-					The ground elevation shown above is an estimation only. It is based on our interpretations						
						of published maps and other documents reviewed for the purposes of this e valuation. It is not sufficiently accurate for preparing construction bids and design documents.						
	_											
10												
	-											
	1											
	-											
	-											
)	1	<u> </u>		BORING LOG						
	Mì			& _	Μ	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - PIMA STREET TUCSON, ARIZONA						
	' \	7			, 	PROJECT NO. DATE FIGURE						
						604817002 12/15 A-6						

MPLES			CF)		NO	DATE DRILLED BORING NO B-7							
eet) SAN	OOT	(%)∃	Υ (P0	5	ATIOI	GROUND ELEVATION 2,464' ± (MSL) SHEET 1 OF 1							
TH (f	NS/F	TURE	NSIT	MBC	SIFIC, S.C.S	METHOD OF DRILLING CME-45 Hollow-Stem Auger (Southlands)							
DEP 3ulk riven	BLO	MOIS	rY DE	S	n N N	DRIVE WEIGHT 140 lbs. Automatic DROP 30"							
			DR		0	SAMPLED BY <u>NAG</u> LOGGED BY <u>NAG</u> REVIEWED BY							
0						DESCRIPTION/INTERPRETATION ASPHALT CONCRETE: Approximately 6 inches thick.							
					SC	ALLUVIUM:							
						Brown, dry, medium dense, clayey SAND; few gravel.							
	25												
	-												
						Total Depth = 3 feet. Groundwater not encountered during drilling.							
						Backfilled and asphalt concrete patched on 10/02/15 shortly after completion of drilling.							
5						Notes:							
						Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the							
						report.							
						The ground elevation shown above is an estimation only. It is based on our interpretations							
						not sufficiently accurate for preparing construction bids and design documents.							
10													
15													
20													
				R- 1	AAn	BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM - PIMA STREET							
		4		x	NI	TUCSON, ARIZONA PROJECT NO. DATE FIGURE							
	V				¥	604817002 12/15 A-7							

APLES			CF)		NO	DATE DRILLED 10/02/15	BORING NO.	B-8				
eet) SAN	OOT	≡ (%)	Y (PC	Ъ	ATION S.	GROUND ELEVATION2,467' ± (MSL	_) SHEET	1OF1				
TH (f	NS/F	TURE	NSIT	/ MBC	CLASSIFIC. U.S.C.9	SIFIC.	METHOD OF DRILLING CME-45 Hollow-Stem	Auger (Southlands)				
DEF Bulk Driven	BLO	MOIS	۲ DE	Ś		DRIVE WEIGHT 140 lbs. Automatic	DROP	30"				
			DF			SAMPLED BY <u>NAG</u> LOGGED BY	NAG REVIEWE	D BY				
0						ASPHALT CONCRETE: Approximately 6 1.	/2 inches thick.					
				1.1.1. 1.1.1.1.	SC	AGGREGATE BASE: Approximately 2 inch	les thick.					
						<u>ALLUVIUM</u> : Light brown, dry, loose, clayey SAND; trace	gravel.					
	13											
						Γ_{otal} Denth = 3 feet.						
						Groundwater not encountered during drilling.						
						Backfilled and asphalt concrete patched on 10/02/15 shortly after completion of drilling.						
5						Notes: Groundwater though not encountered at the	time of drilling ma	y rise to a higher level				
						due to seasonal variations in precipitation and several other factors as discussed in the						
						The ground elevation shown shows is as a the	nation only It is h	ad on our intermetation				
						of published maps and other documents revie	wed for the purpose	s of this e valuation. It is				
						not sufficiently accurate for preparing constru	iction bids and desig	n documents.				
10												
15												
20						I						
	Mir			& I		TUCSON PAVEMENT	BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM - PIMA STREET					
		3				PROJECT NO.	DATE	FIGURE				
	,				7	604817002	12/15	A-8				

APPENDIX B

LABORATORY TESTING

Classification

Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings in Appendix A.

Gradation Analysis

One gradation analysis test was performed on a selected representative soil sample in general accordance with ASTM D 422. The grain-size distribution curves are shown in Figures B-1 through B-4. These test results were utilized in evaluating the soil classification in accordance with the USCS.

Atterberg Limits

Tests were performed on a selected representative fine-grained soil sample to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. These test results were utilized to evaluate the soil classification in accordance with the USCS. The test results and classifications are shown on Figure B-5.

SYMBOL	LOCATION	DEPTH (FT)	Liquid Limit, Ll	PLASTIC LIMIT, PL	PLASTICITY INDEX, PI	USCS CLASSIFICATION (Fraction Finer Than No. 40 Sieve)	USCS (Entire Sample)
•	B-1	1.5-3.0	50	22	28	СН	SC
-	B-3	1.0-2.5	29	15	14	CL	SC
•	B-5	1.5-3.0	35	24	11	CL	SC
0	B-7	1.5-3.0	51	16	35	СН	SC

Ninyo «	Moore	ATTERBERG LIMITS TEST RESULTS	FIGURE
PROJECT NO.	DATE	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - PIMA STREET	B _5
604817002	12/15		D-J

APPENDIX C

PAVEMENT AND CORE SUMMARY

TUCSON PAVEMENT REHABILITATION PROGRAM - FY 16

Recovered Approximate No. Location AC thickness AC Thickness **Core Description Pavement Condition** (in)* (**in**) Two lifts, 1.5" and 1.5", Severe alligator and irregular Westbound, 290 feet east cracking, rutting in both wheet tracks, B-1 3 numerous voids, poor quality 3 of Country Club Road bottom lift. considerable spalling, flushing. Two lifts, 1" and 2", Severe alligator and irregular Eastbound, 110 feet east of **B-2** 3 numerous voids, poor quality cracking, rutting in both wheet tracks, 3 Howard Boulevard bottom lift. considerable spalling, flushing. Severe alligator and irregular Two lifts, 1" and 2", few Westbound, 140 feet west cracking, rutting in both wheet tracks, B-3 3 3 of Palo Verde Boulevard voids. considerable spalling, flushing. Severe alligator and irregular Two lifts, 1.5" and 1", Eastbound, 770 feet east of cracking, rutting in both wheet tracks, 2.5 numerous voids, poor quality **B-4** 2.5 Palo Verde Boulevard bottom lift. considerable spalling, flushing. Some tranverse and irregular cracking, Westbound, 540 feet west Three lifts, 1.5", 3", and 3", 7 B-5 7.5 of Alvernon Way few voids. flushing. Three lifts, 1.5", 2", and 2.5", Severe alligator, longitudinal, and Eastbound, 290 feet east of B-6 6 numerous voids, bottom lift irregular cracking, considerable 6 Alvernon Way spalling, rutting, patches, flushing. disintegrated. Three lifts, 2", 1.5", and 2.5", Severe alligator, longitudinal, and Westbound, 50 feet east of numerous voids, bottom lift **B-7** 6 irregular cracking, considerable 6 Desmond Lane disintegrated and poor spalling, rutting, patches, flushing. quality. Severe alligator, longitudinal, and Eastbound, 180 feet west of Two lifts, 3.5" and 3". irregular cracking, considerable **B-8** 6.5 6.5 **Columbus Boulevard** numerous voids. spalling, rutting, patches, flushing.

PIMA STREET - PAVEMENT AND CORE SUMMARY

Notes:

* Measured in the boring

APPENDIX D

TRAFFIC DATA

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 (520) 316-6745

Site Code: 15-1283-008 Station ID: Wed 10/07/2015 Pima St. btwn. Winstal Blvd. & Alvernon Way 32.243491 -110.911159 Latitude: 0' 0.000 Undefined

Eastbound												La		Undelined
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	0	12	2	0	0	0	0	0	0	0	0	0	0	14
01:00	0	9	1	0	0	0	0	0	0	0	0	0	0	10
02:00	0	4	0	0	0	0	0	0	0	0	0	0	0	4
03:00	0	4	1	0	0	0	0	0	0	0	0	0	0	5
04:00	0	2	1	0	0	0	0	0	0	0	0	0	0	3
05:00	0	25	3	0	1	0	0	0	0	0	0	0	0	29
06:00	0	61	7	1	2	0	0	0	0	0	0	0	0	71
07:00	1	207	21	3	8	1	0	0	0	0	0	0	0	241
08:00	1	259	23	2	6	1	0	0	0	0	0	0	0	292
09:00	0	176	21	1	6	0	0	0	0	0	0	0	0	204
10:00	0	173	22	3	6	2	0	1	0	0	0	0	0	207
11:00	0	185	29	2	7	0	0	0	0	0	0	0	0	223
12 PM	1	171	42	2	5	0	0	0	0	0	0	0	0	221
13:00	1	245	31	2	6	0	0	0	0	0	0	0	0	285
14:00	1	262	37	2	9	0	0	0	0	0	0	0	0	311
15:00	1	297	43	3	9	0	0	1	0	0	0	0	0	354
16:00	0	330	40	1	6	2	0	0	0	0	0	1	0	380
17:00	1	349	32	1	4	3	0	0	0	0	0	0	0	390
18:00	0	195	28	2	4	1	0	0	0	0	0	0	0	230
19:00	0	98	12	1	2	0	0	0	0	0	0	0	0	113
20:00	0	95	12	0	2	0	0	0	0	0	0	0	0	109
21:00	0	74	5	0	1	0	0	0	0	0	0	0	0	80
22:00	0	31	5	0	1	0	0	0	0	0	0	0	0	37
23:00	0	17	0	0	0	0	0	0	0	0	0	0	0	17
Total	7	3281	418	26	85	10	0	2	0	0	0	1	0	3830
Percent	0.2%	85.7%	10.9%	0.7%	2.2%	0.3%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	
AM Peak	07:00	08:00	11:00	07:00	07:00	10:00		10:00						08:00
Vol.	1	259	29	3	8	2		1						292
PM Peak	12:00	17:00	15:00	15:00	14:00	17:00		15:00				16:00		17:00
Vol.	1	349	43	3	9	3		1				1		390
Grand Total	7	3281	418	26	85	10	0	2	0	0	0	1	0	3830
Percent	0.2%	85.7%	10.9%	0.7%	2.2%	0.3%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 (520) 316-6745

Site Code: 15-1283-008 Station ID: Wed 10/07/2015 Pima St. btwn. Winstal Blvd. & Alvernon Way 32.243491 -110.911159 Latitude: 0' 0.000 Undefined

Westbound												La		Undenned
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	1	13	ŏ	0	0	0	0	0	0	0	0	0	0	14
01:00	0	7	1	0	0	0	0	0	0	0	0	0	0	8
02:00	0	1	1	0	0	0	0	0	0	0	0	0	0	2
03:00	0	3	1	0	0	0	0	0	0	0	0	0	0	4
04:00	0	7	2	0	0	0	0	0	0	0	0	0	0	9
05:00	0	16	1	0	2	0	0	0	0	0	0	0	0	19
06:00	2	82	12	4	5	0	0	0	0	0	0	0	0	105
07:00	3	299	41	5	11	0	0	0	0	0	0	0	0	359
08:00	4	285	34	5	8	0	0	0	0	0	0	0	0	336
09:00	1	173	31	1	2	0	0	0	1	0	0	0	0	209
10:00	1	160	28	4	5	0	0	0	0	0	0	0	0	198
11:00	2	204	23	1	5	0	0	0	0	0	0	0	0	235
12 PM	4	190	30	2	8	1	0	0	0	0	0	0	0	235
13:00	2	209	34	3	8	1	0	0	0	0	0	0	1	258
14:00	1	233	46	3	7	1	0	0	0	0	0	0	0	291
15:00	0	229	29	2	3	0	0	0	0	0	0	0	0	263
16:00	1	281	42	2	14	1	0	0	0	0	0	0	0	341
17:00	0	306	31	1	6	1	0	0	0	0	0	0	0	345
18:00	1	210	29	1	3	0	0	0	0	0	0	0	0	244
19:00	0	105	20	1	2	0	0	0	0	0	0	0	0	128
20:00	0	99	15	0	1	0	0	0	0	0	0	0	0	115
21:00	0	83	7	0	2	0	0	0	0	0	0	0	0	92
22:00	1	36	5	0	1	0	0	0	0	0	0	0	0	43
23:00	1	30	1	0	0	0	0	0	0	0	0	0	0	32
Total	25	3261	464	35	93	5	0	0	1	0	0	0	1	3885
Percent	0.6%	83.9%	11.9%	0.9%	2.4%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
AM Peak	08:00	07:00	07:00	07:00	07:00				09:00					07:00
Vol.	4	299	41	5	11				1					359
PM Peak	12:00	17:00	14:00	13:00	16:00	12:00							13:00	17:00
Vol.	4	306	46	3	14	1							1	345
Grand Total	25	3261	464	35	93	5	0	0	1	0	0	0	1	3885
Percent	0.6%	83.9%	11.9%	0.9%	2.4%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 (520) 316-6745

Site Code: 15-1283-008 Station ID: Wed 10/07/2015 Pima St. btwn. Winstal Blvd. & Alvernon Way 32.243491 -110.911159 Latitude: 0' 0.000 Undefined

Eastbound,	Westbound	ł										La	titude: 0 [.] 0.000	
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	1	25	2	0	0	0	0	0	0	0	0	0	0	28
01:00	0	16	2	0	0	0	0	0	0	0	0	0	0	18
02:00	0	5	1	0	0	0	0	0	0	0	0	0	0	6
03:00	0	7	2	0	0	0	0	0	0	0	0	0	0	9
04:00	0	9	3	0	0	0	0	0	0	0	0	0	0	12
05:00	0	41	4	0	3	0	0	0	0	0	0	0	0	48
06:00	2	143	19	5	7	0	0	0	0	0	0	0	0	176
07:00	4	506	62	8	19	1	0	0	0	0	0	0	0	600
08:00	5	544	57	7	14	1	0	0	0	0	0	0	0	628
09:00	1	349	52	2	8	0	0	0	1	0	0	0	0	413
10:00	1	333	50	7	11	2	0	1	0	0	0	0	0	405
11:00	2	389	52	3	12	0	0	0	0	0	0	0	0	458
12 PM	5	361	72	4	13	1	0	0	0	0	0	0	0	456
13:00	3	454	65	5	14	1	0	0	0	0	0	0	1	543
14:00	2	495	83	5	16	1	0	0	0	0	0	0	0	602
15:00	1	526	72	5	12	0	0	1	0	0	0	0	0	617
16:00	1	611	82	3	20	3	0	0	0	0	0	1	0	721
17:00	1	655	63	2	10	4	0	0	0	0	0	0	0	735
18:00	1	405	57	3	7	1	0	0	0	0	0	0	0	474
19:00	0	203	32	2	4	0	0	0	0	0	0	0	0	241
20:00	0	194	27	0	3	0	0	0	0	0	0	0	0	224
21:00	0	157	12	0	3	0	0	0	0	0	0	0	0	172
22:00	1	67	10	0	2	0	0	0	0	0	0	0	0	80
23:00	1	47	1	0	0	0	0	0	0	0	0	0	0	49
Total	32	6542	882	61	178	15	0	2	1	0	0	1	1	7715
Percent	0.4%	84.8%	11.4%	0.8%	2.3%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
AM Peak	08:00	08:00	07:00	07:00	07:00	10:00		10:00	09:00					08:00
Vol.	5	544	62	8	19	2		1	1					628
PM Peak	12:00	17:00	14:00	13:00	16:00	17:00		15:00				16:00	13:00	17:00
Vol.	5	655	83	5	20	4		1				1	1	735
Grand Total	32	6542	882	61	178	15	0	2	1	0	0	1	1	7715
Percent	0.4%	84.8%	11.4%	0.8%	2.3%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	

APPENDIX E

PAVEMENT OPTIMIZATION DESIGN ANALYSIS BY TENSAR

SpectraPave4 PRO[™] Pavement Optimization Design Analysis

Design Parameters for AASHTO (1993) Equation

Reliability (%)	= 95	Initial Serviceability	= 4.5
Standard Normal Deviate	= -1.645	Terminal Serviceability	= 2.5
Standard Deviation	= 0.40	Change in Serviceability	= 2

Aggregate fill shall conform to following requirement:

D50 <= 27mm (Base course)

Unstabilized Section Material Properties

Tensar

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
ABC	Aggregate Base Course	20	0.140	1.25

Stabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
MSL	Mechanically Stabilized Base Cour	20	0.289	1.25

Unstabilized Pavement

ACC1

5.00 (in)

Calculated Traffic (ESALs) = 1,845,000

Stabilized Pavement

Subgrade Modulus = 8,824 (psi) Structural Number = 4.006 Calculated Traffic (ESALs) = 3,757,000

LIMITATIONS OF THE REPORT

The designs, illustrations, information and other content included in this report are necessarily general and conceptual in nature, and do not constitute engineering advice or any design intended for actual construction. Specific design recommendations can be provided as the project develops.							
Project Name	Pima Street						
Company Name	Tensar						
Designer	Schlessinger Date 12/14/15						

This document was prepared using SpectraPave4 PRO™ Software Version 4.6.1 Developed by Tensar International Corporation Copyright 1998 - 2014, All Rights Reserved.

PAVEMENT EVALUATION TUCSON PAVEMENT RECONSTRUCTION PROGRAM ROSEMONT BOULEVARD TUCSON, ARIZONA

PREPARED FOR:

Kimley-Horn & Associates, Inc. 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

PREPARED BY:

Ninyo & Moore Geotechnical and Environmental Sciences Consultants 1991 East Ajo Way, Suite 145 Tucson, Arizona 85713

> December 14, 2015 Project No. 604817002

1991 East Ajo Way, Suite 145 • Tucson, Arizona 85713 • Phone (520) 577-7600 • Fax (520) 577-7606

December 14, 2015 Project No. 604817002

Mr. Rick Solis, P.E. Kimley-Horn 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

Subject: Pavement Evaluation Tucson Pavement Reconstruction Program – Rosemont Boulevard Tucson, Arizona

Dear Mr. Solis:

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, Ninyo & Moore has performed a pavement evaluation for the above-referenced site. The attached report presents our methodology, findings, conclusions, and recommendations regarding the geotechnical conditions at the project site.

We appreciate the opportunity to be of service to you during this phase of the project.

Sincerely, **NINYO & MOORE**

Marek J. Kasztalski, PE, PMP, LEED AP Senior Geotechnical Engineer

Fred Narcaroti Principal/Tucson Office Manager

MJK/DT/FFN/tlp

Distribution: (1) Addressee (Electronic Copy)

TABLE OF CONTENTS

Page

1.	INTRODUCTION
2.	SCOPE OF SERVICES
3.	SITE DESCRIPTION
4.	PROPOSED CONSTRUCTION
5.	EXISTING PAVEMENT CONDITION
6.	FIELD EXPLORATION AND LABORATORY TESTING
7.	SUBSURFACE CONDITIONS47.1. Asphaltic Concrete.47.2. Alluvium5
8.	CONCLUSIONS
9.	RECOMMENDATIONS59.1. Recommended Pavement Structural Sections59.2. Earthwork69.2.1. Site Preparation69.2.2. Excavations69.2.3. Fill Materials69.2.4. Grading and Subgrade Preparation79.3. Pavement Design Summary79.3.1. Traffic89.3.2. R-Value and Resilient Modulus89.3.3. Statistical Parameters99.3.4. Serviceability Index99.3.5. Layer Coefficients109.3.6. Asphalt Pavement Section Recommendations10
10.	SITE DRAINAGE
11.	PRE-CONSTRUCTION CONFERENCE11
12.	CONSTRUCTION OBSERVATION AND TESTING11
13.	LIMITATIONS11
14.	REFERENCES

Tables

Table 1 – R-value Summary	8
Table 2 – Summary of Statistical Parameters	9
Table 3 – Summary of Serviceability Parameters	9
Table 4 – Structural Pavement Sections for 20-Year Design Life	.10

Figures

Figure 1 – Site Location Figures 2A and 2B – Boring Locations

Appendices

Appendix A – Boring Logs

Appendix B – Laboratory Testing

Appendix C – Pavement and Core Summary

Appendix D – Traffic Data

Appendix E – Pavement Optimization Design Analysis by Tensar

1. INTRODUCTION

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, we have performed a pavement evaluation for the Rosemont Boulevard Pavement Reconstruction project between Speedway Boulevard and Winsett Street, in Tucson, Arizona. The purpose of our evaluation was to assess the pavement and subgrade conditions along the project alignment in order to provide geotechnical recommendations for design and construction. This report presents the results of our evaluation, conclusions, and recommendations regarding the proposed construction.

2. SCOPE OF SERVICES

The scope of our services generally included:

- Preparing a field testing plan and associated permit application for submittal to the City of Tucson (COT).
- Conducting a visual reconnaissance of the pavement along the alignment and marking out the boring locations.
- Notifying Arizona811 of our boring locations prior to conducting the field work.
- Arranging for traffic control measures to conduct the field work.
- Coring the existing asphaltic concrete (AC) pavement at eight locations along the project alignment.
- Exploring the subsurface soils within the project limits by drilling, logging, and sampling eight exploratory soil borings to approximate depths of 3 feet below ground surface (bgs). The boring logs are presented in Appendix A.
- Performing laboratory tests on selected samples collected from our borings to evaluate gradation and Atterberg limits. The results of the laboratory tests are included in Appendix B.
- Preparing this report presenting our findings, conclusions and recommendations regarding the proposed reconstruction.

Our scope of services did not include environmental consulting services such as hazardous waste sampling or analytical testing at the site. A detailed scope of services and estimated fee for such services can be provided upon request.

3. SITE DESCRIPTION

The project site is located in Sections 11 and 14 of Township 14 South, Range 14 East relative to the Gila and Salt River Base Line and Meridian. The project alignment extends along Rosemont Boulevard between Speedway Boulevard and Winsett Street in Tucson, Arizona (Figure 1).

At the time of our evaluation mostly residential developments existed along the project alignment. The roadway section consisted of one travel lane in each direction, a center lane (north of Broadway Boulevard), concrete sidewalks and concrete curb along the project alignment.

4. **PROPOSED CONSTRUCTION**

The COT has identified several segments of the existing street network for reconstruction and/or rehabilitation in fiscal year (FY) 2016 under Bid Package 2. The scope of this report includes Rosemont Boulevard between Speedway Boulevard and Winsett Street. The project alignment is approximately 1 ¹/₂ miles long.

We understand that the COT anticipates full-depth reconstruction of the existing roadway along the project alignment. The City proposes a new pavement section consisting of 5 inches of AC per of the COT Department of Transportation Standard Specifications Section 406 over 5 inches of aggregate base (AB) per Section 303 of the COT Standard Specifications.

We further understand that the COT intends to use Tucson Department of Transportation (TDOT) AC Mix No. 2 PG 76-22TR+ for the surface layer and TDOT AC Mix No. 1 PG 70-10 for the underlying layer. Both layers are proposed to be 2.5 inches thick.

Inyo & Moo

Due to conflicts with shallow utility lines, subgrade improvement by overexcavation will not be performed and the new pavement section will be constructed on subgrade improved with Geogrid (Tensar Geogrid TX5 or equivalent).

The scope of this exploration included evaluation of the existing pavement section and subgrade soils in order to provide recommendations for pavement reconstruction in accordance with the current COT practice. Calculations for the new pavement section supporting the new construction proposed by the COT are presented in Section 9.3 and in Appendix E of this report.

5. EXISTING PAVEMENT CONDITION

On October 1, 2015, Ninyo & Moore conducted a limited visual evaluation of the pavement surface along the project alignment. Based on our field observations, the AC pavement exhibited signs of severe distress in many locations along the project alignment primarily consisting of extensive alligator, block, transverse and irregular cracking, flushing and potholes. Some of the cracks exhibited evidence of past sealing. Asphaltic concrete patches were observed at some locations which were probably associated with past maintenance efforts (pothole and crack repairs) or with underground utility work. The crack widths generally varied between hairline (less than 1/8-inch) and over one inch.

In our opinion, the distress observed along the project alignment indicates structural failure and is related to a combination of pavement age, subgrade condition, traffic, and environmental impacts.

6. FIELD EXPLORATION AND LABORATORY TESTING

On October 1, 2015, Ninyo & Moore conducted a geotechnical exploration in order to evaluate the subsurface conditions and collect AC cores and soil samples for laboratory testing. Our evaluation consisted of coring the existing AC pavement, drilling, logging, and sampling eight small-diameter borings, denoted as B-1 through B-8, utilizing a CME-45 truck-mounted drill rig equipped with hollow-stem augers. The borings extended to depths of approximately 3 feet bgs. The approximate locations of the borings are depicted on Figure 2.

Ninyo & Moore personnel logged the borings in general accordance with the Unified Soil Classification System (USCS) and American Society for Testing and Materials (ASTM) D 2488 by observing cuttings and drive samples. Collected ring samples were trimmed in the field, wrapped in plastic bags, and placed in cylindrical plastic containers to retain in-place moisture conditions.

The soil samples collected from our drilling activities were transported to the Ninyo & Moore laboratory in Tucson, Arizona for geotechnical laboratory testing. The tests included gradation and Atterberg limits. A description of each laboratory test method and the test results are presented in Appendix B.

7. SUBSURFACE CONDITIONS

Our knowledge of the subsurface conditions at the project site is based on our field exploration, laboratory testing, and general experience in the area. More detailed stratigraphic information is presented on the boring logs in Appendix A, attached to this report. The boring logs contain our field and laboratory test results, as well as our interpretation of conditions believed to exist between actual samples retrieved. Therefore, these boring logs contain both factual and interpretive information. Lines delineating subsurface strata on the boring logs are intended to group soils having similar engineering properties and characteristics. They should be considered approximate as the actual transition between soil types (strata) may be gradual. A key to the soil symbols and terms used on the boring logs is provided in Appendix A.

7.1. Asphaltic Concrete

Asphaltic concrete pavement was encountered at the surface of each of our borings. The AC thickness varied between approximately 2 and 4 inches, in our borings. It should be noted that the thickness of the AC pavement between the sampling locations may vary and could be different from that encountered at our sampling locations. Detailed core descriptions are presented in Appendix C.

inyo & Moo

Aggregate base was not observed in our borings. It is possible the AB material blended with the native subgrade soils, such that delineation of the AB/subgrade interface was not easily interpreted.

7.2. Alluvium

Native alluvial soils were encountered below the pavement section, and extended to the boring termination depths. The alluvium generally consisted of loose to very dense, silty and clayey sands with varying amounts of gravel and scattered caliche cementation.

8. CONCLUSIONS

Based on the results of our visual and subsurface evaluations, laboratory testing, and data analysis, geotechnical considerations include the following:

- The on-site soils generally include clayey and silty sands, with a plasticity index (PI) value varying between 13 and 31. Many on-site soils may be sensitive to moisture content fluctuations and may be difficult to compact especially at higher moisture contents. The contractor should be aware of this condition.
- Clayey sands of high plasticity were encountered in our borings.
- Due to the relatively widely spaced nature of our borings, soil conditions may differ from what was observed during our field exploration.
- The pavement exhibits significant distress in many locations along the project alignment consisting mainly of alligator, transverse, block and irregular cracking.
- Full-depth pavement reconstruction is considered for this project as proposed by the COT.

9. **RECOMMENDATIONS**

The following sections present our geotechnical recommendations for the project. If the proposed construction is changed from that discussed in this report, Ninyo & Moore should be contacted for additional recommendations.

9.1. Recommended Pavement Structural Sections

The recommended pavement sections are presented in the table below:

Pavement Section	Service Life (years)	AC (in) ¹	$AB (in)^2$				
COT Preferred Pavement with Geogrid	20	5	5				
Alternative Pavement Section without Geogrid	6	8					
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.							

9.2. Earthwork

The following sections provide our earthwork recommendations for this project. In general, the earthwork specifications contained in the *City of Tucson/Pima County Standard Specifications for Public Improvements, 2003 Edition (COT/PC Specifications)* are expected to apply unless specifically noted.

9.2.1. Site Preparation

Construction areas should be cleared of deleterious materials, if any are present, including abandoned utilities, construction debris, vegetation, and any other material that might interfere with the performance or progress of the work. These materials should be disposed of at a legal dumpsite. Existing features that call for relocation or removal and extend below finish grade, if present, should be removed, and the resulting excavations backfilled with engineered fill.

9.2.2. Excavations

Our evaluation of the excavation characteristics of the on-site soils is based on the results of our exploratory borings, site observations, and experience with similar materials.

9.2.3. Fill Materials

Soils with PI values of 15 or less (as evaluated by ASTM D 4318) are generally suitable for use as engineered fill. Our Atterberg limits test indicated the PI values ranging

between 13 and 31. Based on this test result, many of the on-site soils are not suitable for re-use as engineered fill.

Engineered fill should not include organic material, construction debris, or other nonsoil fill materials. Rock particles and clay lumps should not be larger than 4 inches in dimension. Unsuitable material should be disposed of off-site or in non-structural areas.

9.2.4. Grading and Subgrade Preparation

In general, grading operations should be performed in accordance with Section 205 of the COT/PC Specifications.

Due to potential conflicts with underground utilities, we recommend that the subgrade be improved by the application of Geogrid (Tensar Geogrid TX5 or equivalent). Geogrid should be placed in accordance with the manufacturer's instructions.

Alternatively, if Geogrid is not applied we recommend new pavements be supported on 6 inches of subgrade that is compacted by appropriate mechanical methods to a relative compaction of 95 percent as evaluated by ASTM D 698 at a moisture content generally near optimum. The thickness of the improvement zone should be measured from the bottom of the AB layer.

In areas where excessive moisture is encountered so that the above compaction cannot be achieved and/or the subgrade surface is unstable and yielding (pumping) under the roller wheels, subgrade soils should be scarified to a depth of 12 inches, aerated, and recompacted as specified above. Alternatively, subgrade soils in problem areas should be and replaced with engineered fill to a depth of 12 inches below the bottom of the AB.

9.3. Pavement Design Summary

The following sections present our design assumptions and recommendations for the new flexible pavement section of Rosemont Boulevard between Speedway Boulevard and Winsett Street, as this roadway is scheduled for full-depth pavement reconstruction.

inyo & Moor
The pavement section was developed using the Active Practices Guidelines issued by the COT Department of Transportation (Guidelines) and the Arizona Department of Transportation (ADOT) Preliminary Engineering and Design Manual (PEDM). We assumed that the subgrade will be improved by the application of Geogrid or overexcavation, as outlined in Section 9.2.4 of this report. The new pavement sections are designed for a 20-year service life.

9.3.1. Traffic

The future traffic numbers used in this report are based on traffic counts provided by Kimley-Horn and Associates, Inc. (KHA), and later communication with the KHA. This information is presented in Appendix D. Based on the above information, and using the procedures outlined in the Guidelines and PEDM, the design number of equivalent single axle loads (ESALs) for the design lane during the 20-year design period was calculated as approximately 3,395,960.

9.3.2. R-Value and Resilient Modulus

The analysis for the design R-value for the pavement section has been performed based on procedures detailed in the Guidelines and the PEDM, using correlated R-values. The correlated R-values were derived from the PI and percent passing No. 200 Sieve test results. A summary of the R-values for this project is presented in Table 1 below:

Location	Sample Depth (ft)	Correlated R-Value
B-1	1.5-3.0	35
В-3	1.5-3.0	37
B-5	1.5-3.0	17
B-7	1.5-3.0	28

 Table 1 – R-value Summary

In the interest of conservatism, we recommend that an R-value of 20 be used for pavement design for this project.

If the project needs fill from an off-site source, we recommend the soils used for subgrade support should have an R-value of 20 or more. If during construction, the subgrade is found to vary from the expected soil conditions, we should be contacted so we may re-evaluate our recommended R-values. Based on the above design R-values, the design subgrade resilient modulus (M_R) value of 8,824 pounds per square inch (psi) was calculated in accordance with the Guidelines.

9.3.3. Statistical Parameters

A standard deviation of 0.40 was used for design of the flexible pavement in accordance with the Guidelines. The level of reliability and standard normal deviation (Z_R) values were selected in accordance with the Guidelines for the arterial functional classification. Their respective values are presented in the table below:

Roadway	Functional Classification	Standard Deviation	Level of Reliability	Standard Normal Deviation	
Rosemont Boulevard	Arterial	0.40	95 %	-1.645	

 Table 2 – Summary of Statistical Parameters

9.3.4. Serviceability Index

Initial and terminal serviceability indices were selected for the pavement design of the roadways in accordance with the Guidelines. A summary of the serviceability indices for each roadway is provided in the table below:

Roadway	Functional Classification	Initial Serviceability Index	Terminal Serviceability Index	Change in Serviceability
Rosemont Boulevard	Arterial	4.5	2.5	2.0

 Table 3 – Summary of Serviceability Parameters

9.3.5. Layer Coefficients

The following structural coefficients were used for the pavement structure in accordance with the Guidelines:

- AC: 0.44.
- AB: 0.14.

A drainage coefficient of 1.25 was used for the AB coefficient as recommended in the Guidelines.

As mentioned in Section 4 above, due to conflicts with existing shallow utilities, it is recommended that the subgrade be improved using Geogrid (Tensar Geogrid TX5 or equivalent). In this case the AB layer coefficient is 0.289.

9.3.6. Asphalt Pavement Section Recommendations

The structural number (SN) was calculated based on the parameters described above. The table below presents the calculated SN value and the recommended structural pavement sections. The AC thickness meets the COT requirements. Supporting documentation of the pavement optimization design using Geogrid is presented in Appendix E:

Roadway	SN	AC (in) ¹	$AB(in)^2$
COT Preferred Pavement with Geogrid	3.99	5	5
Alternative Pavement without Geogrid	4.01	6	8
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as t Section 406 of the COT Specifications.	he surface mix and TDOT A	AC Mix No. 1 PG 70-10 for	r the underlying layers per

 Table 4 – Structural Pavement Sections for 20-Year Design Life

The above pavement structural section has been designed with the assumption that the

subgrade is prepared by as recommended in Section 9.2.4.

² AB per Section 303 of the COT Specifications.

10. SITE DRAINAGE

Surface drainage should be provided to divert water away from paved surfaces. Surface water should also not be permitted to pond on or below pavement areas. Positive drainage for this project is defined as a slope of 2 percent or more for a distance of 5 feet or more away from the pavements. To deter accumulation of water below the new pavement sections, the bottom of the overexcavated zone below the new pavement should be sloped toward the edges of the roadway.

11. PRE-CONSTRUCTION CONFERENCE

We recommend that a pre-construction conference be held. Representatives of the owner, the civil engineer, Ninyo & Moore, and the contractor should be in attendance to discuss the project plans and schedule. Our office should be notified if the project description included herein is incorrect or if the project characteristics are significantly changed.

12. CONSTRUCTION OBSERVATION AND TESTING

During construction operations, we recommend that Ninyo & Moore perform observation and testing services for the project. These services should be performed to evaluate exposed subgrade conditions, including the extent and depth of overexcavation, to evaluate the suitability of proposed borrow materials for use as engineered fill and to observe placement and test compaction of fill soils. Qualified subcontractors utilizing appropriate techniques and construction materials should perform construction of the proposed improvements.

13. LIMITATIONS

The field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Uncertainties relative to subsurface conditions can be reduced

through additional subsurface exploration. Additional subsurface evaluation will be performed upon request. Please also note that our evaluation was limited to assessment of the geotechnical aspects of the project, and did not include evaluation of structural issues, environmental concerns, or the presence of hazardous materials.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document.

This report is intended for design purposes only. It does not provide sufficient data to prepare an accurate bid by contractors. It is suggested that the bidders and their geotechnical consultant perform an independent evaluation of the subsurface conditions in the project areas. The independent evaluations may include, but not be limited to, review of other geotechnical reports prepared for the adjacent areas, site reconnaissance, and additional exploration and laboratory testing.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are encountered, our office should be notified and additional recommendations, if warranted, will be provided upon request. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

14. **REFERENCES**

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards.

- Arizona Department of Transportation (ADOT), 1989, Preliminary Engineering and Design Manual, Materials Section, 3rd Edition: dated March.
- City of Tucson, Arizona, Department of Transportation, Engineering Division, 1987, Active Practices Guidelines: dated June 1.

Ninyo & Moore, In-house proprietary information.

Ninyo	Moore	BORING LOCATIONS	FIGURE
PROJECT NO:	DATE:	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ROSEMONT BOULEVARD	2A
604817002	12/15	TUCSON, ARIZONA	

file no: 4817blm1015h

APPENDIX A

BORING LOGS

Field Procedure for the Collection of Relatively Undisturbed Samples

Relatively undisturbed soil samples were obtained in the field using the following methods.

The Modified Split-Barrel Drive Sampler

The sampler, with an external diameter of 3.0 inches, was lined with 1-inch long, thin brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a hammer or the Kelly bar of the drill rig in general accordance with ASTM D 3550. The driving weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer or bar, and the number of blows per foot of driving are presented on the boring logs as an index to the relative resistance of the materials sampled. The samples were removed from the sample barrel in the brass rings, sealed, and transported to the laboratory for testing.

		SSIFICATION	СН	ART PER A	STM D 2488]			GRAI	N SIZE			
DD				SECON	DARY DIVISIONS		DESC		SIEVE	GRAIN	APPROXIMATE		
		510113	GR	OUP SYMBOL	GROUP NAME				SIZE	SIZE	SIZE		
		CLEAN GRAVEL		GW	well-graded GRAVEL		Во	ulders	> 12"	> 12"	Larger than		
		less than 5% fines		GP	poorly graded GRAVEL						Dasketball-sized		
	GRAVEI			GW-GM	well-graded GRAVEL with silt		Co	bbles	3 - 12"	3 - 12"	Fist-sized to basketball-sized		
	more than	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt								
	coarse	CLASSIFICATIONS 5% to 12% fines		GW-GC	well-graded GRAVEL with clay			Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized		
	retained on			GP-GC	poorly graded GRAVEL with clay		Gravel			0.19 - 0.75"	Pag sized to		
	INO. 4 SIEVE	GRAVEL with		GM	silty GRAVEL			Fine	#4 - 3/4"		thumb-sized		
COARSE- GRAINED		FINES more than		GC	clayey GRAVEL			0	#40 #4	0.070 0.40"	Rock-salt-sized to		
SOILS		12% fines		GC-GM	silty, clayey GRAVEL			Coarse	#10 - #4	0.079 - 0.19"	pea-sized		
50% retained		CLEAN SAND		SW	well-graded SAND		Sand	Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to		
on No. 200 sieve	SAND 50% or more of coarse fraction	less than 5% fines		SP	poorly graded SAND						rock-salt-sized		
		SAND with re DUAL CLASSIFICATIONS 5% to 12% fines		SW-SM	well-graded SAND with silt		Fine		#200 - #40	0.0029 -	Flour-sized to		
				SP-SM	poorly graded SAND with silt					0.017	3ugar-3izeu		
				SW-SC	well-graded SAND with clay		F	nes	Passing #200	< 0.0029"	Flour-sized and smaller		
	passes No. 4 sieve			SP-SC	poorly graded SAND with clay								
		SAND with FINES more than 12% fines		SM	silty SAND		PLASTICITY CHART				•		
				SC	clayey SAND								
				SC-SM	silty, clayey SAND		7						
				CL	lean CLAY		° 6						
	SILT and	INORGANIC		ML	SILT		(Id) 5						
	CLAY liquid limit			CL-ML	silty CLAY			D		CH or OF			
FINE-	less than 50%	OBCANIC		OL (PI > 4)	organic CLAY		≚ 3	p					
SOILS		ORGANIC		OL (PI < 4)	organic SILT			D	CL or (WH or OH		
50% or				СН	fat CLAY		I SV 1						
No. 200 sieve	SILT and CLAY	INORGANIC		MH	elastic SILT		T T CL-ML ML or OL						
	liquid limit 50% or more	OPCANIC		OH (plots on or above "A"-line)	organic CLAY			0 10	20 30 40	50 60 70	80 90 100		
		URGANIC		OH (plots below "A"-line)	organic SILT				LIQUID	LIMIT (LL), %			
	Highly C	Organic Soils		PT Peat									

APPARENT DENSITY - COARSE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
DENSITY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Loose	≤4	≤ 8	<u>≤</u> 3	≤ 5		
Loose	5 - 10	9 - 21	4 - 7	6 - 14		
Medium Dense	11 - 30	22 - 63	8 - 20	15 - 42		
Dense	31 - 50	64 - 105	21 - 33	43 - 70		
Very Dense	> 50	> 105	> 33	> 70		

Ninyo & Moore

CONSISTENCY - FINE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
CONSIS- TENCY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Soft	< 2	< 3	< 1	< 2		
Soft	2 - 4	3 - 5	1 - 3	2 - 3		
Firm	5 - 8	6 - 10	4 - 5	4 - 6		
Stiff	9 - 15	11 - 20	6 - 10	7 - 13		
Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26		
Hard	> 30	> 39	> 20	> 26		

USCS METHOD OF SOIL CLASSIFICATION

Explanation of USCS Method of Soil Classification DATE

DEPTH (feet)	Bulk SAMPLES	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BORING LOG EXPLANATION SHEET				
0							Bulk sample.				
							Modified split-barrel	drive sampler. lified split-barrel dri	ve samnler		
									ve sampler.		
							Sample retained by ot	hers.			
							Standard Penetration	Test (SPT).			
5 -	\Box						No recovery with a SI	PT.			
		XX/XX					Shelby tube sample. I	Distance pushed in in	nches/length of sample	recovered in inches.	
							No recovery with She	lby tube sampler.			
							Continuous Push Sam	ple.			
			Ş				Seepage.				
10-			ļi. ₩ļi				Groundwater encount Groundwater measure	ered during drilling.			
						-					
						SM	MAJOR MATERIAL Solid line denotes uni	<u>TYPE (SOIL)</u> : t change.			
						CL	Dashed line denotes n	naterial change.			
							Attitudes: Strike/Dip				
							c: Contact				
15 -							J: Joint f: Fracture				
							F: Fault				
							s: Shear				
	$\left \right $						bss: Basal Slide Surfa	ce			
							sz: Shear Zone				
							sbs: Shear Bedding Su	ırface			
							The total depth line is	a solid line that is d	rawn at the bottom of	the boring.	
20							<u> </u>		BORINGLOG	<u> </u>	
			\overline{n}		&	AAn	nre		Explanation of Boring Log Sy	mbols	
			Э					PROJECT NO.	DATE	FIGURE	

IPLES			F)		_	DATE DRILLED 10/1/15 BORING NO B-1			
set) SAN	Ю	(%)	/ (PC		TION .	GROUND ELEVATION 2,510' ± (MSL) SHEET 1 OF 1			
TH (fe	VS/F0	TURE	NSIT	MBO	S.C.S	S.C.S	S.C.S	S.C.S	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)
DEP 3ulk riven	BLOV	NOIS	Y DE	S	LASS U.	DRIVE WEIGHT 140 lbs. Automatic DROP 30"			
			DR		0	SAMPLED BY LOGGED BY REVIEWED BY			
						DESCRIPTION/INTERPRETATION			
				///	SC	AGGREGATE BASE: Approximately 2 inches thick.			
	28					ALLUVIUM: Brown, dry, medium dense, clayey SAND; few gravel; scattered caliche nodules.			
				****		Total Depth = 3 feet.			
						oroundwater not encountered during drining.			
						Backfilled and asphalt concrete patched on 10/1/15 shortly after completion of drilling.			
						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.			
						The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.			
10									
15									
20									
				1		BORING LOG			
		<u>n</u> ų	10	&	MQ	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ROSEMONT BOULEVARD TUCSON, ARIZONA			
	V	J	·			PROJECT NO. DATE FIGURE 604817002 12/15 A-1			

(i) I	 T
Image: Second state sta	T
Image: Second	T
SAMPLED BY DM LOGGED BY DM REVIEWED BY D' DESCRIPTION/INTERPRETATION	T
DESCRIPTION/INTERPRETATION	
ASPHALT CONCRETE: Approximately 4 inches thick.	
SC AGGREGATE BASE: Approximately 3 inches thick.	
ALLUVIUM: Brown, dry, loose, clayey SAND; scattered caliche nodules.	
Total Depth = 3 feet. Groundwater not encountered during drilling.	
Backfilled and asphalt concrete patched on 10/1/15 shortly after completion of	drilling
	1' 1
Notes: Groundwater, though not encountered at the time of drilling, may rise to level due to seasonal variations in precipitation and several other factors as disc the report.	o a higher cussed in
The ground elevation shown above is an estimation only. It is based on our inte	erpretations
of published maps and other documents reviewed for the purposes of this evalue not sufficiently accurate for preparing construction bids and design documents.	uation. It is
	•
TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ROSEMONT BO TUCSON, ARIZONA	OULEVARD
PROJECT NO. DATE FIGUR 604817002 12/15 A.2	RE 2

PLES			F)			DATE DRILLED	10/1/15	BORING NO.	B-3							
et) SAM	D	(%)	(PCI		TION	GROUND ELEVATIO	N 2,524' ± (M	SL) SHEET								
ITH (fe	/S/FC	-URE	ISITY	MBOI	IFIC∕A S.C.S	IFICA S.C.S	IFICA S.C.S	IFICA S.C.S	IFIC∕A S.C.S	IFICA S.C.S	IFICA S.C.S	IFICA S.C.S	METHOD OF DRILLI	IG CME-75, 8" Hollow	Stem Auger (Southlands))
UEP iven	BLOW	LSION	/ DEN	SY	ASS-U.5	DRIVE WEIGHT	140 lbs. Automati	c DROP	30"							
^۵ ۵			DR		Ū	SAMPLED BY DA	A LOGGED BY	DM REVIEWE	ED BY DT							
							DESCRIPTION/									
					80	AGGREGATE BASE	<u>Approximately 2</u>	ches thick								
	16				30	ALLUVIUM: Brown, moist, medium	i dense, clayey SANI	D; few gravel; scatter	ed caliche nodules.							
				****		Total Depth = 3 feet.	untered during drillir	a a a a a a a a a a a a a a a a a a a								
	-							ig.								
						Backfilled and asphalt	concrete patched on	10/1/15 shortly after	completion of drilling.							
						Notes: Groundwater, t level due to seasonal v the report.	hough not encountere ariations in precipita	ed at the time of drilli tion and several other	ng, may rise to a higher factors as discussed in							
	-					The ground elevation s of published maps and not sufficiently accura	shown above is an es other documents rev te for preparing cons	timation only. It is ba iewed for the purpose truction bids and desi	sed on our interpretations es of this evaluation. It is gn documents.							
	-															
	4															
	-															
	4															
	-															
	-															
15	-															
	-															
	-															
	-															
20																
								BORING LOO								
	₩//	ΠŲ	ĮŪ «	&	M	JULE	IUCSON PAVEMENT RE	CONSTRUCTION PROGRA TUCSON, ARIZONA	M - ROSEMONT BOULEVARD							
	V	U			V -		PROJECT NO. 604817002	DATE 12/15	FIGURE							

	DRILLED	10/1/15	BORING NO.	В-4
	JND ELEVATION	2,529' ± (MSL) SHEET	1 OF 1
H=H (₽	Hod of Drilling C	ME-75, 8" Hollow St	em Auger (Southlands)	
	= WEIGHT	140 lbs. Automatic	DROP	30"
	LED BY DM	LOGGED BY	DM REVIEWE	D BY DT
		DESCRIPTION/IN	TERPRETATION	
SC ALLU	<u>VIUM</u> :	AND C 1	iches unek.	
Brown	, dry, loose, clayey SA	AND; few gravel.		
Grour	Jepth = 3 feet. dwater not encountere	ed during drilling.		
Backf	lled and asphalt conc	rete patched on 10	0/1/15 shortly after of	completion of drilling.
5	Groundwater, though	not encountered	at the time of drillin	ng, may rise to a higher
level of the res	ue to seasonal variation	ons in precipitatio	on and several other	factors as discussed in
	round elevation showr	ahove is an estir	nation only. It is has	ed on our interpretations
of put	lished maps and other	documents revie	wed for the purpose	s of this evaluation. It is
	ficiently accurate for	preparing constru	iction bids and desig	gn documents.
15				
			BORING LOG	
<i></i>	TUCS	ON PAVEMENT RECO	NSTRUCTION PROGRAM TUCSON, ARIZONA	4 - ROSEMONT BOULEVARD
	PF	ROJECT NO. 504817002	DATE 12/15	FIGURE A-4

IPLES			F)			DATE DRILLED	10/1/15	BORING NO.	B-5
eet) SAM	Ю	(%)	(PC		TION .	GROUND ELEVATIO	2,539' ± (M	ISL) SHEET	OF
TH (fe	VS/FC	TURE	NSIT	MBO	S.C.S	METHOD OF DRILLI	NG CME-75, 8" Hollow	V Stem Auger (Southlands)	
DEP 3ulk riven	BLOV	MOIS	Y DE	S	LASS U.	DRIVE WEIGHT	140 lbs. Automat	ic DROP	30"
			DR		0	SAMPLED BY			D BY
0				vererer		ASPHALT CONCRE	<u>TE</u> : Approximately 3	3 1/2 inches thick.	
	23				50	ALLUVIUM: Brown, dry, medium of Total Depth = 3 feet.	dense, clayey SAND	few gravel, scattered	caliche nodules.
						Groundwater not enco	ountered during drilli	ng.	
						Backfilled and asphalt	t concrete patched on	10/1/15 shortly after	completion of drilling.
						Notes: Groundwater, to level due to seasonal with report.	hough not encounter variations in precipita	ed at the time of drilli and several other	ng, may rise to a higher factors as discussed in
						The ground elevation of published maps and not sufficiently accura	shown above is an es l other documents re- tte for preparing cons	stimation only. It is ba viewed for the purpose struction bids and desi	sed on our interpretations es of this evaluation. It is gn documents.
10									
15									
20									
				<u>s</u>		nre	TUCSON PAVEMENT R	BORING LOC ECONSTRUCTION PROGRAM	M - ROSEMONT BOULEVARD
		3					PROJECT NO.	DATE	FIGURE
	,						604817002	12/15	A-5

Image: transmit and trandot transmit and transmit and transmit and transmit an	<u>1</u>
Image: Second state sta	5.
Image: Solution of the second state of the second	 S.
SAMPLED BY DM LOGGED BY DM REVIEWED BY DT	<u> </u>
DESCRIPTION/INTERPRETATION	5.
0 ASPHALT CONCRETE: Approximately 3 1/4 inches thick.	5.
20 Total Depth = 3 feet. Crown dwater not encountered dwing drilling	
Backfilled and asphalt congrate patched on 10/1/15 chortly after completion of dri	Ilina
5	g.
Notes: Groundwater, though not encountered at the time of drilling, may rise to a level due to seasonal variations in precipitation and several other factors as discus the report.	higher sed in
The ground elevation shown above is an estimation only. It is based on our interprof published maps and other documents reviewed for the purposes of this evaluation not sufficiently accurate for preparing construction bids and design documents.	etations on. It is
TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ROSEMONT BOUL TUCSON, ARIZONA	EVARD
PROJECT NO. DATE FIGURE 60/817002 12/15 A 6	

	D 10/1/15 BORING NO. B-7
	/ATION 2.569' ± (MSL) SHEET 1 OF 1
	RILLING CME-75, 8" Hollow Stem Auger (Southlands)
	T 140 lbs. Automatic DROP 30"
SAMPLED BY	
SC ALLUVIUM:	NCRETE: Approximately 2 inches thick.
Brown, dry, very	y dense, clayey SAND; few gravel; numerous caliche nodules.
50/3	
Total Depth = 2. Groundwater no	3 feet. t encountered during drilling.
Backfilled and a	sphalt concrete patched on 10/1/15 shortly after completion of drilling.
Notes: Groundw	ater, though not encountered at the time of drilling, may rise to a higher
5 level due to seas the report.	onal variations in precipitation and several other factors as discussed in
The ground elev	ation shown above is an estimation only. It is based on our interpretations ps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently a	accurate for preparing construction bids and design documents.
	BORING LOG
<i>NINYO & M</i> OOLG	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ROSEMONT BOULEVARD TUCSON, ARIZONA
	PROJECT NO. DATE FIGURE 604817002 12/15 A-7

	PLES			F)			DATE DRILLED	10/1/15	BORING NO.	B-8
et)	SAM	D	(%)	(PCI		TION	GROUND ELEVATIO	N 2,569' ± (M	SL) SHEET	
TH (fe	\square	/S/FC	'URE	ISITY	MBOI	IFICA S.C.S.	METHOD OF DRILLI	NG CME-75, 8" Hollow	Stem Auger (Southlands))
DEP.	iven	BLOW	LSION	Y DEN	SΥ	-ASS U.9	DRIVE WEIGHT	140 lbs. Automati	c DROP	30"
	۵	_	2	DR		Ö	SAMPLED BY D	M LOGGED BY	DM REVIEWE	D BY DT
								DESCRIPTION/		
	F				1.1.1	90	AGGREGATE BASE	<u>TE</u> . Approximately 2 2: Approximately 3 in	ches thick.	
		19				50	ALLUVIUM: Brown, dry, medium o	lense, clayey SAND;	scattered caliche nod	ules.
							Total Depth = 3 feet. Groundwater not enco	ountered during drillir	ıg.	
							Backfilled and asphalt	t concrete patched on	10/1/15 shortly after	completion of drilling.
∥ ₅⊥							N C	1 1 ·	1 1	1
							Notes: Groundwater, t level due to seasonal w the report.	hough not encountered ariations in precipita	ed at the time of drilli tion and several other	ng, may rise to a higher factors as discussed in
							The ground elevation of published maps and not sufficiently accura	shown above is an es l other documents rev te for preparing cons	timation only. It is ba iewed for the purpose truction bids and desi	sed on our interpretations es of this evaluation. It is gn documents.
10-										
+	+									
15+	+									
∥ ∔	+									
†	+									
∥ ↓										
									BORINGIO	
					& I		nre	TUCSON PAVEMENT RE	CONSTRUCTION PROGRA	M - ROSEMONT BOULEVARD
			7					PROJECT NO.	DATE	FIGURE
		•				•		604817002	12/15	A-8

APPENDIX B

LABORATORY TESTING

Classification

Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings in Appendix A.

Gradation Analysis

One gradation analysis test was performed on a selected representative soil sample in general accordance with ASTM D 422. The grain-size distribution curves are shown in Figures B-1 through B-4. These test results were utilized in evaluating the soil classification in accordance with the USCS.

Atterberg Limits

Tests were performed on a selected representative fine-grained soil sample to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. These test results were utilized to evaluate the soil classification in accordance with the USCS. The test results and classifications are shown on Figure B-5.

SYMBOL	LOCATION	DEPTH (FT)	LIQUID LIMIT, LL	PLASTIC LIMIT, PL	PLASTICITY INDEX, PI	USCS CLASSIFICATION (Fraction Finer Than No. 40 Sieve)	USCS (Entire Sample)
•	B-1	1.5-3.0	44	29	15	ML	SM
-	B-3	1.5-3.0	38	25	13	CL	SC
•	B-5	1.5-3.0	53	22	31	СН	SC
0	B-7	1.5-3.0	55	28	27	СН	SC

Ninyo «	Moore	ATTERBERG LIMITS TEST RESULTS	FIGURE
PROJECT NO.	DATE	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - ROSEMONT BOULEVARD	B-5
604817002	12/15		D- 3

APPENDIX C

PAVEMENT AND CORE SUMMARY

TUCSON PAVEMENT REHABILITATION PROGRAM - FY 16

No.	Location	Approximate AC thickness (in)*	Recovered AC Thickness (in)	Core Description	Pavement Condition
B-1	Southbound, 180 feet south of Speedway Boulevard	2.5	2.25	One lift, numerous voids.	Extensive transverse, block, alligator and block cracking, some sealed.
B-2	Northbound, 60 feet north of Rosewood Street	4	4	Two lifts, 2.5" and 1.5", crack throughout core.	Transverse, alligator and irregular cracking, some sealed.
B-3	Southbound, 50 feet north of Baker Street	2.5	2	One lift with decomposed bottom, numerous voids.	Extensive transverse, alligator and irregular cracking, some sealed.
B-4	Northbound, 500 feet south of 5th Street	4	4	Two lifts, 1.5" and 2.5", bottom lift cracked, numerous voids.	Extensive longitudinal, alligator and irregular cracking, potholes, flushing.
B-5	Southbound, 50 feet north of 9th Street	3.5	3.5	Two lifts, 1.25" and 2.25", few voids.	Extensive longitudinal, alligator and irregular cracking, potholes, patches, flushing.
B-6	Northbound, 250 feet south of Broadway Boulevard	3.25	3	Two lifts, 1" and 2.25", numerous voids.	Extensive alligator and irregular cracking, potholes, flushing.
B-7	Southbound, 130 feet south of Scarlett Street	2	2	One lift with decomposed bottom, numerous voids.	Block, alligator and irregular cracking, potholes, flushing.
B-8	Northbound, 160 feet north of Winsett Street	2	2	Two lifts, 1" and 1", numerous voids.	Block, alligator and irregular cracking, potholes, flushing.

ROSEMONT BOULEVARD - PAVEMENT AND CORE SUMMARY

Notes:

* Measured in the boring

APPENDIX D

TRAFFIC DATA

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-004 Station ID: Wed 10/07/2015 Rosemont Blvd. btwn. Broadway Blvd. & 9th St. 32.222934, -110.883861 Latitude: 0' 0.000 Undefined

Northbound												La		Undeline
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	0	2	Ō	0	4	0	0	0	0	0	0	0	0	6
01:00	0	3	0	0	2	0	0	0	0	0	0	0	0	5
02:00	0	4	0	0	0	0	0	0	0	0	0	0	0	4
03:00	0	3	1	0	4	0	0	0	0	0	0	0	0	8
04:00	0	3	0	0	4	0	0	0	0	0	0	0	0	7
05:00	0	22	1	0	8	0	0	0	0	0	0	0	0	31
06:00	1	40	3	3	23	0	0	0	0	0	0	0	0	70
07:00	1	125	14	2	58	0	0	0	0	0	0	0	0	200
08:00	0	121	14	0	63	0	0	0	0	0	0	0	0	198
09:00	0	105	7	0	45	0	0	0	0	0	0	0	0	157
10:00	0	102	6	2	46	0	0	1	0	0	0	0	0	157
11:00	0	126	18	2	48	0	0	0	0	0	0	0	0	194
12 PM	0	172	14	1	48	1	0	1	0	0	0	0	0	237
13:00	0	177	16	0	64	0	0	0	0	0	0	0	0	257
14:00	0	190	27	2	61	0	0	0	0	0	0	0	0	280
15:00	0	173	11	3	66	0	0	1	0	0	0	0	0	254
16:00	0	197	32	0	79	1	0	0	0	0	0	0	0	309
17:00	0	169	15	0	74	0	0	0	1	0	0	0	0	259
18:00	0	117	7	0	37	0	0	0	0	0	0	0	0	161
19:00	0	74	9	0	19	1	0	0	0	0	0	0	0	103
20:00	0	42	5	0	11	0	0	0	0	0	0	0	0	58
21:00	0	27	3	0	10	0	0	0	0	0	0	0	0	40
22:00	0	21	3	0	8	0	0	0	0	0	0	0	0	32
23:00	0	14	0	0	0	0	0	0	0	0	0	0	0	14
Day	2	2029	206	15	782	З	0	З	1	0	0	0	0	3041
Total	<u> </u>	2020	200	10	102	Ū	Ū	U		0	Ŭ	U	Ŭ	0041
Percent	0.1%	66.7%	6.8%	0.5%	25.7%	0.1%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	
AM Peak	06:00	11:00	11:00	06:00	08:00			10:00						07:00
Vol.	1	126	18	3	63			1						200
PM Peak		16:00	16:00	15:00	16:00	12:00		12:00	17:00					16:00
Vol.		197	32	3	79	1		1	1					309
Grand	2	2029	206	15	782	З	Ο	3	1	Ω	0	Ο	0	3041
Total	~	2020	200	10	102	0	0	0	I	0	U	U	U	00-1
Percent	0.1%	66.7%	6.8%	0.5%	25.7%	0.1%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-004 Station ID: Wed 10/07/2015 Rosemont Blvd. btwn. Broadway Blvd. & 9th St. 32.222934, -110.883861 Latitude: 0' 0.000 Undefined

Southbound												La		Undelined
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	0	5	Ō	0	1	0	0	0	0	0	0	0	0	6
01:00	0	2	0	0	1	0	0	0	0	0	0	0	0	3
02:00	0	2	0	0	1	0	0	0	0	0	0	0	0	3
03:00	0	3	0	0	0	0	0	1	0	0	0	0	0	4
04:00	0	5	0	0	1	0	0	0	0	0	0	0	0	6
05:00	0	12	1	0	9	1	0	1	0	0	0	0	0	24
06:00	0	38	2	1	13	0	0	0	0	0	0	0	0	54
07:00	3	142	13	0	38	1	0	2	0	0	0	0	0	199
08:00	4	128	12	3	28	2	0	1	0	0	0	0	0	178
09:00	1	114	12	3	38	0	0	0	1	0	0	0	0	169
10:00	2	135	20	0	28	0	0	0	1	0	0	0	0	186
11:00	1	161	24	1	45	1	0	0	1	0	0	0	0	234
12 PM	1	169	16	2	55	0	0	0	0	0	0	0	0	243
13:00	2	146	17	2	46	0	0	0	0	0	0	0	0	213
14:00	3	243	12	4	66	0	0	1	0	0	0	0	0	329
15:00	1	159	16	3	51	0	0	1	0	0	0	0	0	231
16:00	5	184	26	1	53	1	0	0	0	0	0	0	0	270
17:00	4	185	12	1	52	1	0	0	0	0	0	0	0	255
18:00	2	100	14	1	27	0	0	0	0	0	0	0	0	144
19:00	0	70	13	0	20	0	0	3	0	0	0	0	0	106
20:00	0	56	16	0	9	0	0	0	0	0	0	0	0	81
21:00	0	46	12	0	5	0	0	0	0	0	0	0	0	63
22:00	0	14	3	0	6	0	0	0	0	0	0	0	0	23
23:00	0	18	1	0	3	0	0	0	0	0	0	0	0	22
Day Total	29	2137	242	22	596	7	0	10	3	0	0	0	0	3046
Percent	1.0%	70.2%	7.9%	0.7%	19.6%	0.2%	0.0%	0.3%	0.1%	0.0%	0.0%	0.0%	0.0%	
AM Peak	08:00	11:00	11:00	08:00	11:00	08:00		07:00	09:00					11:00
Vol.	4	161	24	3	45	2		2	1					234
PM Peak	16:00	14:00	16:00	14:00	14:00	16:00		19:00						14:00
Vol.	5	243	26	4	66	1		3						329
Grand Total	29	2137	242	22	596	7	0	10	3	0	0	0	0	3046
Percent	1.0%	70.2%	7.9%	0.7%	19.6%	0.2%	0.0%	0.3%	0.1%	0.0%	0.0%	0.0%	0.0%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-004 Station ID: Wed 10/07/2015 Rosemont Blvd. btwn. Broadway Blvd. & 9th St. 32.222934, -110.883861 Latitude: 0' 0.000 Undefined

Northbound,	Southbou	Ind										Ld		Ondenne
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/7/15	0	7	Ō	0	5	0	0	0	0	0	0	0	0	12
01:00	0	5	0	0	3	0	0	0	0	0	0	0	0	8
02:00	0	6	0	0	1	0	0	0	0	0	0	0	0	7
03:00	0	6	1	0	4	0	0	1	0	0	0	0	0	12
04:00	0	8	0	0	5	0	0	0	0	0	0	0	0	13
05:00	0	34	2	0	17	1	0	1	0	0	0	0	0	55
06:00	1	78	5	4	36	0	0	0	0	0	0	0	0	124
07:00	4	267	27	2	96	1	0	2	0	0	0	0	0	399
08:00	4	249	26	3	91	2	0	1	0	0	0	0	0	376
09:00	1	219	19	3	83	0	0	0	1	0	0	0	0	326
10:00	2	237	26	2	74	0	0	1	1	0	0	0	0	343
11:00	1	287	42	3	93	1	0	0	1	0	0	0	0	428
12 PM	1	341	30	3	103	1	0	1	0	0	0	0	0	480
13:00	2	323	33	2	110	0	0	0	0	0	0	0	0	470
14:00	3	433	39	6	127	0	0	1	0	0	0	0	0	609
15:00	1	332	27	6	117	0	0	2	0	0	0	0	0	485
16:00	5	381	58	1	132	2	0	0	0	0	0	0	0	579
17:00	4	354	27	1	126	1	0	0	1	0	0	0	0	514
18:00	2	217	21	1	64	0	0	0	0	0	0	0	0	305
19:00	0	144	22	0	39	1	0	3	0	0	0	0	0	209
20:00	0	98	21	0	20	0	0	0	0	0	0	0	0	139
21:00	0	73	15	0	15	0	0	0	0	0	0	0	0	103
22:00	0	35	6	0	14	0	0	0	0	0	0	0	0	55
23:00	0	32	1	0	3	0	0	0	0	0	0	0	0	36
Day	04	14.00	4.40	07	4070	40	•	40	4	0	0	•	0	0007
Total	31	4166	448	37	1378	10	0	13	4	0	0	0	0	6087
Percent	0.5%	68.4%	7.4%	0.6%	22.6%	0.2%	0.0%	0.2%	0.1%	0.0%	0.0%	0.0%	0.0%	
AM Peak	07:00	11:00	11:00	06:00	07:00	08:00		07:00	09:00					11:00
Vol.	4	287	42	4	96	2		2	1					428
PM Peak	16:00	14:00	16:00	14:00	16:00	16:00		19:00	17:00					14:00
Vol.	5	433	58	6	132	2		3	1					609
Grand	31	4166	448	37	1378	10	0	13	Л	0	0	0	0	6087
Total Percent	0.5%	68.4%	7.4%	0.6%	22.6%	0.2%	0.0%	0.2%	ب 0.1%	0.0%	0.0%	0.0%	0.0%	0007

APPENDIX E

PAVEMENT OPTIMIZATION DESIGN ANALYSIS BY TENSAR

SpectraPave4 PRO[™] Tensar, Pavement Optimization Design Analysis

Design Parameters for AASHTO (1993) Equation

Reliability (%)	= 95	Initial Serviceability	= 4.5
Standard Normal Deviate	= -1.645	Terminal Serviceability	= 2.5
Standard Deviation	= 0.4	Change in Serviceability	= 2

Aggregate fill shall conform to following requirement:

D50 <= 27mm (Base course)

Unstabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
ABC	Aggregate Base Course	20	0.140	1.25

Stabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
MSL	Mechanically Stabilized Base Cour	20	0.289	1.25

Unstabilized Pavement

6.00 (in)

8.00 (in)

ACC1

ABC

Subgrade Modulus = 8,824 (psi)

Calculated Traffic (ESALs) = 3,976,000

Structural Number = 4.040

Stabilized Pavement

Subgrade Modulus = 8,824 (psi) Structural Number = 4.006 Calculated Traffic (ESALs) = 3,757,000

LIMITATIONS OF THE REPORT

The designs, illustrations, information and other content included in this report are necessarily general and conceptual in nature, and do not constitute engineering advice or any design intended for actual construction. Specific design recommendations can be provided as the project develops.							
Project Name	Rosemont Blvd.						
Company Name	Tensar						
Designer	Schlessinger	Date	11/30/15				

This document was prepared using SpectraPave4 PRO™ Software Version 4.6.1 Developed by Tensar International Corporation Copyright 1998 - 2014, All Rights Reserved.

PAVEMENT EVALUATION TUCSON PAVEMENT RECONSTRUCTION PROGRAM TUCSON BOULEVARD, FORT LOWELL ROAD TO GLENN STREET TUCSON, ARIZONA

PREPARED FOR:

Kimley-Horn & Associates, Inc. 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

PREPARED BY:

Ninyo & Moore Geotechnical and Environmental Sciences Consultants 1991 East Ajo Way, Suite 145 Tucson, Arizona 85713

> December 15, 2015 Project No. 604817002

1991 East Ajo Way, Suite 145 • Tucson, Arizona 85713 • Phone (520) 577-7600 • Fax (520) 577-7606

December 15, 2015 Project No. 604817002

Mr. Rick Solis, P.E. Kimley-Horn 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

Subject: Pavement Evaluation Tucson Pavement Reconstruction Program – Tucson Boulevard Fort Lowell Road to Glenn Street Tucson, Arizona

Dear Mr. Solis:

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, Ninyo & Moore has performed a pavement evaluation for the above-referenced site. The attached report presents our methodology, findings, conclusions, and recommendations regarding the geotechnical conditions at the project site.

We appreciate the opportunity to be of service to you during this phase of the project.

Marek J. Kasztalski, PE, PMP, LEED AP Senior Geotechnical Engineer

Fred Narcaroti Principal/Tucson Office Manager

MJK/DT/FFN/tlp

Distribution: (1) Addressee (Electronic Copy)
TABLE OF CONTENTS

1.	INTRODUCTION							
2.	SCOPE OF SERVICES							
3.	SITE DESCRIPTION							
4.	PROPOSED CONSTRUCTION							
5.	EXISTING PAVEMENT CONDITION							
6.	FIELD EXPLORATION AND LABORATORY TESTING							
7.	SUBSURFACE CONDITIONS47.1.Asphaltic Concrete.7.2.Alluvium5							
8.	CONCLUSIONS							
9.	RECOMMENDATIONS59.1. Recommended Pavement Structural Sections59.2. Earthwork69.2.1. Site Preparation69.2.2. Excavations69.2.3. Fill Materials79.2.4. Grading and Subgrade Preparation79.3. Pavement Design Summary89.3.1. Traffic89.3.2. R-Value and Resilient Modulus89.3.3. Statistical Parameters99.3.4. Serviceability Index99.3.5. Layer Coefficients109.3.6. Asphalt Pavement Section Recommendations10							
10.	SITE DRAINAGE							
11.	PRE-CONSTRUCTION CONFERENCE11							
12.	CONSTRUCTION OBSERVATION AND TESTING11							
13.	LIMITATIONS							
14.	. REFERENCES							

TABLES

Table 1 – R-value Summary	8
Table 2 – Summary of Statistical Parameters	9
Table 3 – Summary of Serviceability Parameters	10
Table 4 – Structural Pavement Sections for 20-Year Design Life	11

Figures

Figure 1 – Site Location Figure 2 – Boring Locations

Appendices

Appendix A – Boring Logs

Appendix B – Laboratory Testing

Appendix C – Pavement and Core Summary

Appendix D – Traffic Data

Appendix E – Pavement Optimization Design Analysis by Tensar

1. INTRODUCTION

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, we have performed a pavement evaluation for the Tucson Boulevard Pavement Reconstruction project between Fort Lowell Road and Glenn Street, in Tucson, Arizona. The purpose of our evaluation was to assess the pavement and subgrade conditions along the project alignment in order to provide geotechnical recommendations for design and construction. This report presents the results of our evaluation, conclusions, and recommendations regarding the proposed construction.

2. SCOPE OF SERVICES

The scope of our services generally included:

- Preparing a field testing plan and associated permit application for submittal to the City of Tucson (COT).
- Conducting a visual reconnaissance of the pavement along the alignment and marking out the boring locations.
- Notifying Arizona811 of our boring locations prior to conducting the field work.
- Arranging for traffic control measures to conduct the field work.
- Coring the existing asphaltic concrete (AC) pavement at three locations along the project alignment.
- Exploring the subsurface soils within the project limits by drilling, logging, and sampling three exploratory soil borings to approximate depths of 3 feet below ground surface (bgs). The boring logs are presented in Appendix A.
- Performing laboratory tests on selected samples collected from our borings to evaluate gradation and Atterberg limits. The results of the laboratory tests are included in Appendix B.
- Preparing this report presenting our findings, conclusions and recommendations regarding the proposed reconstruction.

Our scope of services did not include environmental consulting services such as hazardous waste sampling or analytical testing at the site. A detailed scope of services and estimated fee for such services can be provided upon request.

3. SITE DESCRIPTION

The project site is located in Sections 32 and 14 of Township 13 South, Range 14 East relative to the Gila and Salt River Base Line and Meridian. The project alignment extends along Tucson Boulevard between Fort Lowell Road and Glenn Street in Tucson, Arizona (Figure 1).

At the time of our evaluation residential and commercial developments existed along the project alignment. The roadway section consisted of one travel lane in each direction, a center lane, concrete sidewalks on the east and west side of the roadway, and concrete curb along most of the project alignment.

4. **PROPOSED CONSTRUCTION**

The COT has identified several segments of the existing street network for reconstruction and/or rehabilitation in fiscal year (FY) 2016 under Bid Package 2. The scope of this report includes Tucson Boulevard between Fort Lowell Road and Glenn Street. The project alignment is approximately 0.5-mile long.

We understand that the COT anticipates full-depth reconstruction of the existing roadway along the project alignment. The City proposes a new pavement section consisting of 5 inches of AC per of the COT Department of Transportation Standard Specifications Section 406 over 5 inches of aggregate base (AB) per Section 303 of the COT Standard Specifications.

We further understand that the COT intends to use Tucson Department of Transportation (TDOT) AC Mix No. 2 PG 76-22TR+ for the surface layer and TDOT AC Mix No. 1 PG 70-10 for the underlying layer. Both layers are proposed to be 2.5 inches thick.

Due to conflicts with shallow utility lines, subgrade improvement by overexcavation will not be performed and the new pavement section will be constructed on subgrade improved with Geogrid (Tensar Geogrid TX5 or equivalent).

The scope of this exploration included evaluation of the existing pavement section and subgrade soils in order to provide recommendations for pavement reconstruction in accordance with the current COT practice. Calculations for the new pavement section supporting the new construction proposed by the COT are presented in Section 9.3 and in Appendix E of this report.

5. EXISTING PAVEMENT CONDITION

On September 30, 2015, Ninyo & Moore conducted a limited visual evaluation of the pavement surface along the project alignment. Based on our field observations, the AC pavement exhibited signs of severe distress in many locations along the project alignment primarily consisting of extensive block, transverse, irregular and alligator cracking with considering spalling, and potholes. Asphaltic concrete patches were observed at some locations which were probably associated with past maintenance efforts (pothole and crack repairs) or with underground utility work. The crack widths generally varied between hairline (less than 1/8-inch) to over 1 ½ inches.

In our opinion, the distress observed along the project alignment indicates structural failure and is related to a combination of pavement age, subgrade condition, traffic, and environmental impacts.

6. FIELD EXPLORATION AND LABORATORY TESTING

On September 30, 2015, Ninyo & Moore conducted a geotechnical exploration in order to evaluate the subsurface conditions and collect AC cores and soil samples for laboratory testing. Our evaluation consisted of coring the existing AC pavement, drilling, logging, and sampling three small-diameter borings, denoted as B-1 through B-3, utilizing a CME-75 truck-mounted drill rig equipped with hollow-stem augers. The borings extended to depths of approximately 3 feet bgs. The approximate locations of the borings are depicted on Figure 2.

Ninyo & Moore personnel logged the borings in general accordance with the Unified Soil Classification System (USCS) and American Society for Testing and Materials (ASTM) D 2488 by observing cuttings and drive samples. Collected ring samples were trimmed in the field, wrapped in plastic bags, and placed in cylindrical plastic containers to retain in-place moisture conditions.

The soil samples collected from our drilling activities were transported to the Ninyo & Moore laboratory in Tucson, Arizona for geotechnical laboratory testing. The tests included gradation and Atterberg limits. A description of each laboratory test method and the test results are presented in Appendix B.

7. SUBSURFACE CONDITIONS

Our knowledge of the subsurface conditions at the project site is based on our field exploration, laboratory testing, and general experience in the area. More detailed stratigraphic information is presented on the boring logs in Appendix A, attached to this report. The boring logs contain our field and laboratory test results, as well as our interpretation of conditions believed to exist between actual samples retrieved. Therefore, these boring logs contain both factual and interpretive information. Lines delineating subsurface strata on the boring logs are intended to group soils having similar engineering properties and characteristics. They should be considered approximate as the actual transition between soil types (strata) may be gradual. A key to the soil symbols and terms used on the boring logs is provided in Appendix A.

7.1. Asphaltic Concrete

Asphaltic concrete pavement was encountered at the surface of each of our borings. The AC thickness varied between approximately 4 and 5 inches, in our borings. It should be noted that the thickness of the AC pavement between the sampling locations may vary and could be different from that encountered at our sampling locations. Detailed core descriptions are presented in Appendix C.

inyo & Moor

Aggregate base was not observed in our borings. It is possible the AB material blended with the native subgrade soils, such that delineation of the AB/subgrade interface was not easily interpreted.

7.2. Alluvium

Native alluvial soils were encountered below the pavement section, and extended to the boring termination depths. The alluvium generally consisted of stiff to hard, sandy clay with varying amounts of gravel and scattered caliche cementation.

8. CONCLUSIONS

Based on the results of our visual and subsurface evaluations, laboratory testing, and data analysis, geotechnical considerations include the following:

- The on-site soils generally include sandy clays, with a plasticity index value (PI) varying between 16 and 22. Many on-site soils may be sensitive to moisture content fluctuations and may be difficult to compact especially at higher moisture contents. The contractor should be aware of this condition.
- Due to the relatively widely spaced nature of our borings, soil conditions may differ from what was observed during our field exploration.
- The pavement exhibits significant distress in many locations along the project alignment consisting mainly of extensive block, transverse, irregular and alligator cracking with considering spalling, and potholes.
- Full-depth pavement reconstruction is considered for this project as proposed by the COT.

9. **RECOMMENDATIONS**

The following sections present our geotechnical recommendations for the project. If the proposed construction is changed from that discussed in this report, Ninyo & Moore should be contacted for additional recommendations.

9.1. Recommended Pavement Structural Sections

The recommended pavement sections are presented in the table below:

Pavement Section	Service Life (years)	AC (in) ¹	$AB (in)^2$				
COT Preferred Pavement with Geogrid	20	5	5				
Alternative Pavement Section without Geogrid	20	5.5	8				
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.							

9.2. Earthwork

The following sections provide our earthwork recommendations for this project. In general, the earthwork specifications contained in the *City of Tucson/Pima County Standard Specifications for Public Improvements, 2003 Edition (COT/PC Specifications)* are expected to apply unless specifically noted.

9.2.1. Site Preparation

Construction areas should be cleared of deleterious materials, if any are present, including abandoned utilities, construction debris, vegetation, and any other material that might interfere with the performance or progress of the work. These materials should be disposed of at a legal dumpsite. Existing features that call for relocation or removal and extend below finish grade, if present, should be removed, and the resulting excavations backfilled with engineered fill.

9.2.2. Excavations

Our evaluation of the excavation characteristics of the on-site soils is based on the results of our exploratory borings, site observations, and experience with similar materials.

9.2.3. Fill Materials

Soils with PI values of 15 or less (as evaluated by ASTM D 4318) are generally suitable for use as engineered fill. Our Atterberg limits test indicated PI values ranging between 16 and 22. Based on this test result, many of the on-site soils are not suitable for re-use as engineered fill.

Engineered fill should not include organic material, construction debris, or other nonsoil fill materials. Rock particles and clay lumps should not be larger than 4 inches in dimension. Unsuitable material should be disposed of off-site or in non-structural areas.

9.2.4. Grading and Subgrade Preparation

In general, grading operations should be performed in accordance with Section 205 of the COT/PC Specifications.

Due to potential conflicts with underground utilities, we recommend that the subgrade be improved by the application of Geogrid (Tensar Geogrid TX5 or equivalent). Geogrid should be placed in accordance with the manufacturer's instructions.

Alternatively, if Geogrid is not applied we recommend new pavements be supported on 6 inches of subgrade that is compacted by appropriate mechanical methods to a relative compaction of 95 percent as evaluated by ASTM D 698 at a moisture content generally near optimum. The thickness of the improvement zone should be measured from the bottom of the AB layer.

In areas where excessive moisture is encountered so that the above compaction cannot be achieved and/or the subgrade surface is unstable and yielding (pumping) under the roller wheels, subgrade soils should be scarified to a depth of 12 inches, aerated, and recompacted as specified above. Alternatively, subgrade soils in problem areas should be and replaced with engineered fill to a depth of 12 inches below the bottom of the AB.

9.3. Pavement Design Summary

The following sections present our design assumptions and recommendations for the new flexible pavement section of Tucson Boulevard between Fort Lowell Road and Glenn Street, as this roadway is scheduled for full-depth pavement reconstruction.

The pavement section was developed using the Active Practices Guidelines issued by the COT Department of Transportation (Guidelines) and the Arizona Department of Transportation (ADOT) Preliminary Engineering and Design Manual (PEDM). We assumed that the subgrade will be improved by the application of Geogrid or overexcavation, as outlined in Section 9.2.4 of this report. The new pavement sections are designed for a 20-year service life.

9.3.1. Traffic

The future traffic numbers used in this report are based on traffic counts provided by Kimley-Horn and Associates, Inc. (KHA), and later communication with the KHA. This information is presented in Appendix D. Based on the above information, and using the procedures outlined in the Guidelines and PEDM, the design number of equivalent single axle loads (ESALs) for the design lane during the 20-year design period was calculated as approximately 2,455,360.

9.3.2. R-Value and Resilient Modulus

The analysis for the design R-value for the pavement section has been performed based on procedures detailed in the Guidelines and the PEDM, using correlated R-values. The correlated R-values were derived from the PI and percent passing No. 200 Sieve test results. A summary of the R-values for this project is presented in Table 1 below:

Location	Sample Depth (ft)	Correlated R-Value
B-1	1.5-3.0	20
B-3	1.5-3.0	23

Table 1 – R-value Summary

In the interest of conservatism, we recommend that an R-value of 20 be used for pavement design for this project.

If the project needs fill from an off-site source, we recommend the soils used for subgrade support should have an R-value of 20 or more. If during construction, the subgrade is found to vary from the expected soil conditions, we should be contacted so we may re-evaluate our recommended R-values. Based on the above design R-values, the design subgrade resilient modulus (M_R) value of 8,824 pounds per square inch (psi) was calculated in accordance with the Guidelines.

9.3.3. Statistical Parameters

A standard deviation of 0.40 was used for design of the flexible pavement in accordance with the Guidelines. The level of reliability and standard normal deviation (Z_R) values were selected in accordance with the Guidelines for the arterial functional classification. Their respective values are presented in the table below:

 Table 2 – Summary of Statistical Parameters

Roadway	Functional Classification	Standard Deviation	Level of Reliability	Standard Normal Deviation
Tucson Boulevard Fort Lowell Road to Glenn Street	Arterial	0.40	95 %	-1.645

9.3.4. Serviceability Index

Initial and terminal serviceability indices were selected for the pavement design of the roadways in accordance with the Guidelines. A summary of the serviceability indices for each roadway is provided in the table below:

Roadway	Functional Classification	Initial Serviceability Index	Terminal Serviceability Index	Change in Serviceability
Tucson Boulevard Fort Lowell Road to Glenn Street	Arterial	4.5	2.5	2.0

Table 3 – Summary of Serviceability Parameters

9.3.5. Layer Coefficients

The following structural coefficients were used for the pavement structure in accordance with the Guidelines:

- AC: 0.44.
- AB: 0.14.

A drainage coefficient of 1.25 was used for the AB coefficient as recommended in the Guidelines.

As mentioned in Section 4 above, due to conflicts with existing shallow utilities, it is recommended that the subgrade be improved using Geogrid (Tensar Geogrid TX5 or equivalent). In this case the AB layer coefficient is 0.289.

9.3.6. Asphalt Pavement Section Recommendations

The structural number (SN) was calculated based on the parameters described above. The table below presents the calculated SN value and the recommended structural pavement sections. The AC thickness meets the COT requirements. Supporting documentation of the pavement optimization design using Geogrid is presented in Appendix E:

Roadway	SN	$AC (in)^1$	$AB(in)^2$				
COT Preferred Pavement with Geogrid	4,01	5	5				
Alternative Pavement without Geogrid	3.76	5.5	8				
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.							

 Table 4 – Structural Pavement Sections for 20-Year Design Life

The above pavement structural section has been designed with the assumption that the subgrade is prepared by as recommended in Section 9.2.4.

10. SITE DRAINAGE

Surface drainage should be provided to divert water away from paved surfaces. Surface water should also not be permitted to pond on or below pavement areas. Positive drainage for this project is defined as a slope of 2 percent or more for a distance of 5 feet or more away from the pavements. To deter accumulation of water below the new pavement sections, the bottom of the overexcavated zone below the new pavement should be sloped toward the edges of the roadway.

11. PRE-CONSTRUCTION CONFERENCE

We recommend that a pre-construction conference be held. Representatives of the owner, the civil engineer, Ninyo & Moore, and the contractor should be in attendance to discuss the project plans and schedule. Our office should be notified if the project description included herein is incorrect or if the project characteristics are significantly changed.

12. CONSTRUCTION OBSERVATION AND TESTING

During construction operations, we recommend that Ninyo & Moore perform observation and testing services for the project. These services should be performed to evaluate exposed subgrade conditions, including the extent and depth of overexcavation, to evaluate the suitability of

proposed borrow materials for use as engineered fill and to observe placement and test compaction of fill soils. Qualified subcontractors utilizing appropriate techniques and construction materials should perform construction of the proposed improvements.

13. LIMITATIONS

The field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation will be performed upon request. Please also note that our evaluation was limited to assessment of the geotechnical aspects of the project, and did not include evaluation of structural issues, environmental concerns, or the presence of hazardous materials.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document.

This report is intended for design purposes only. It does not provide sufficient data to prepare an accurate bid by contractors. It is suggested that the bidders and their geotechnical consultant perform an independent evaluation of the subsurface conditions in the project areas. The independent evaluations may include, but not be limited to, review of other geotechnical reports prepared for the adjacent areas, site reconnaissance, and additional exploration and laboratory testing.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are encountered, our office should be notified and additional recommendations, if warranted, will be provided upon request. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

14. **REFERENCES**

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards.

- Arizona Department of Transportation (ADOT), 1989, Preliminary Engineering and Design Manual, Materials Section, 3rd Edition: dated March.
- City of Tucson, Arizona, Department of Transportation, Engineering Division, 1987, Active Practices Guidelines: dated June 1.

Ninyo & Moore, In-house proprietary information.

APPENDIX A

BORING LOGS

Field Procedure for the Collection of Relatively Undisturbed Samples

Relatively undisturbed soil samples were obtained in the field using the following methods.

The Modified Split-Barrel Drive Sampler

The sampler, with an external diameter of 3.0 inches, was lined with 1-inch long, thin brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a hammer or the Kelly bar of the drill rig in general accordance with ASTM D 3550. The driving weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer or bar, and the number of blows per foot of driving are presented on the boring logs as an index to the relative resistance of the materials sampled. The samples were removed from the sample barrel in the brass rings, sealed, and transported to the laboratory for testing.

	SOIL CLASSIFICATION CHART PER ASTM D 2488					GRAIN SIZE					
DD				SECON	DARY DIVISIONS		DESCRIPTION		SIEVE	GRAIN	APPROXIMATE
				COUP SYMBOL GROUP NAME			SIZE	SIZE	SIZE		
		CLEAN GRAVEL		GW	well-graded GRAVEL		Во	ulders	> 12"	> 12"	Larger than
		less than 5% fines		GP	poorly graded GRAVEL						basketball-sized
	GRAVEI			GW-GM	well-graded GRAVEL with silt		Co	bbles	3 - 12"	3 - 12"	Fist-sized to basketball-sized
	more than	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt						
	coarse	CLASSIFICATIONS 5% to 12% fines		GW-GC	well-graded GRAVEL with clay			Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized
	retained on			GP-GC	poorly graded GRAVEL with clay		Gravel				Pag sized to
	INO. 4 SIEVE	GRAVEL with		GM	silty GRAVEL			Fine	#4 - 3/4"	0.19 - 0.75"	thumb-sized
COARSE- GRAINED		FINES more than		GC	clayey GRAVEL			0	#40 #4	0.070 0.40"	Rock-salt-sized to
SOILS		12% fines		GC-GM	silty, clayey GRAVEL		Sand Me	Coarse	#10 - #4	0.079 - 0.19	pea-sized
50% retained		CLEAN SAND less than 5% fines		SW	well-graded SAND			Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to
on No. 200 sieve	SAND 50% or more of coarse fraction passes No. 4 sieve			SP	poorly graded SAND						rock-salt-sized
		SAND with DUAL CLASSIFICATIONS 5% to 12% fines		SW-SM	well-graded SAND with silt			Fine	#200 - #40	0.0029 -	Flour-sized to
			ND with DUAL DIFICATIONS 0 12% fines	SP-SM	poorly graded SAND with silt					0.017	30gai-3i2eu
				SW-SC	well-graded SAND with clay		F	nes	Passing #200	< 0.0029"	Flour-sized and smaller
				SP-SC	poorly graded SAND with clay						
		SAND with FINES more than 12% fines		SM	silty SAND		PLASTICITY CHART				
				SC	clayey SAND						
				SC-SM	silty, clayey SAND		7				
				CL	lean CLAY		° 6				
	SILT and	INORGANIC		ML	SILT		(Id) 5				
	CLAY liquid limit			CL-ML	silty CLAY			D		CH or OF	
FINE-	less than 50%	OBCANIC		OL (PI > 4)	organic CLAY		≚ 3	p			
SOILS		ORGANIC		OL (PI < 4)	organic SILT			D	CL or (WH or OH
50% or				СН	fat CLAY		I SV 1				
No. 200 sieve	SILT and CLAY	INORGANIC		MH	elastic SILT		CL-ML ML or OL				
	liquid limit 50% or more	OPCANIC		OH (plots on or above "A"-line)	organic CLAY			0 10	20 30 40	50 60 70	80 90 100
		URGANIC		OH (plots below "A"-line)	organic SILT				LIQUID	LIMIT (LL), %	5
	Highly C	Organic Soils		PT	Peat						

APPARENT DENSITY - COARSE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
DENSITY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Loose	≤4	≤ 8	<u>≤</u> 3	≤ 5		
Loose	5 - 10	9 - 21	4 - 7	6 - 14		
Medium Dense	11 - 30	22 - 63	8 - 20	15 - 42		
Dense	31 - 50	64 - 105	21 - 33	43 - 70		
Very Dense	> 50	> 105	> 33	> 70		

Ninyo & Moore

CONSISTENCY - FINE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
CONSIS- TENCY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Soft	< 2	< 3	< 1	< 2		
Soft	2 - 4	3 - 5	1 - 3	2 - 3		
Firm	5 - 8	6 - 10	4 - 5	4 - 6		
Stiff	9 - 15	11 - 20	6 - 10	7 - 13		
Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26		
Hard	> 30	> 39	> 20	> 26		

USCS METHOD OF SOIL CLASSIFICATION

Explanation of USCS Method of Soil Classification DATE

DEPTH (feet)	Bulk SAMPLES	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BORING LOG EXPLANATION SHEET					
0							Bulk sample.					
							Modified split-barrel	drive sampler. lified split-barrel dri	ve samnler			
									ve sampler.			
							Sample retained by ot	hers.				
							Standard Penetration	Test (SPT).				
5 -	\Box						No recovery with a SI	PT.				
		XX/XX					Shelby tube sample. I	Distance pushed in in	nches/length of sample	recovered in inches.		
							No recovery with She	lby tube sampler.				
							Continuous Push Sam	ple.				
			Ş				Seepage.					
10-			ļi. ₩ļi				Groundwater encount Groundwater measure	ered during drilling.				
						-						
						SM	MAJOR MATERIAL Solid line denotes uni	<u>TYPE (SOIL)</u> : t change.				
						CL	Dashed line denotes n	naterial change.				
							Attitudes: Strike/Dip					
							c: Contact					
15 -							J: Joint f: Fracture					
							F: Fault					
							s: Shear					
	$\left \right $						bss: Basal Slide Surfa	ce				
							sz: Shear Zone					
							sbs: Shear Bedding Surface					
							The total depth line is	a solid line that is d	rawn at the bottom of	the boring.		
20							<u> </u>		BORINGLOG	<u> </u>		
	Minun & Anne Evaluation of Razing Log					mbols						
			Э					PROJECT NO.	DATE	FIGURE		

APLES			CF)		7	DATE DRILLED 9/30/15 BORING NO. B-1
eet) SAN	ООТ	E (%)	Y (PC		ATION S.	GROUND ELEVATION 2,396 ± (MSL) SHEET 1 OF 1
DTH (f	WS/Fi	TURE	NSIT	YMBC	SIFIC, .S.C.S	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)
DEF Bulk Triven	BLO	MOIS	۲ DE	Ś	U U	DRIVE WEIGHT 140 lbs. Automatic DROP 30"
			DF			
0				,,,,,		ASPHALT CONCRETE: Approximately 5 inches thick.
					CL	<u>ALLUVIUM</u> : Brown, dry, hard sandy CLAY; trace gravel; scattered caliche nodules.
	36					
						Total Depth = 3 feet.
						Groundwater not encountered during drilling.
						Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling.
5						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher
						the report.
						The ground elevation shown above is an estimation only. It is based on our interpretations
						of pub-lished maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
20						
				R ₇	AAn	BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM - TUCSON BLVD NORTH
		ľ		×		FORT LOWELL ROAD TO GLENN STREET TUCSON, ARIZONA PROJECT NO. DATE FIGURE
	,				7	604817002 12/15 A-1

IPLES			F)		-	DATE DRILLED 9/30/15 BORING NO. B-2
eet) SAN	ΤΟΟ	(%)	Y (PC	Ļ	ATION.	GROUND ELEVATION 2,397 ± (MSL) SHEET 1 OF 1
TH (fe	VS/F0	TURE	NSIT	MBC	sific/ s.c.s	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)
DEP Bulk riven	BLO	MOIS	ry de	S	U. U.	DRIVE WEIGHT 140 lbs. Automatic DROP 30"
			DR		0	SAMPLED BY LOGGED BY REVIEWED BY
0						ASPHALT CONCRETE: Approximately 4 inches thick.
					CL	ALLUVIUM: Brown dry very stiff sandy CLAY: scattered caliche nodules
	16					
						Total Depth = 3 feet.
						Groundwater not encountered during drilling.
						Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling.
5						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher
						level due to seasonal variations in precipitation and several other factors as discussed in the report.
						The ground elevation shown above is an estimation only. It is based on our interpretations
						of pub-lished maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
10						
20						
	• / 2			0		BORING LOG TUCSON PAVEMENT RECONSTRUCTION PROGRAM - TUCSON BLVD NORTH
	V		μ	Š.	M	FORT LOWELL ROAD TO GLENN STREET TUCSON, ARIZONA PROJECT NO. DATE FIGURE
	V				V	604817002 12/15 A-2

	PLES			F)			DATE DRILLED 10/1/15 BORING NO B-3
eet)	SAN	рот	(%)	Y (PC	2	ATION.	GROUND ELEVATION 2,400 ± (MSL) SHEET 1 OF 1
TH (f		NS/F0	TURE	NSIT	MBC	SIFIC/ S.C.S	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)
DEF	Bulk Driven	BLO	MOIS	kY DE	Ś	U U	DRIVE WEIGHT 140 lbs. Automatic DROP 30"
				DF		0	SAMPLED BY DM LOGGED BY DM REVIEWED BY
0							ASPHALT CONCRETE: Approximately 4 inches thick.
5 -		10					ALLOVIUM: Brown, dry, stiff sandy CLAY; trace gravel; scattered caliche nodules. Total Depth = 3 feet. Groundwater not encountered during drilling. Backfilled and asphalt concrete patched on 10/1/15 shortly after completion of drilling. Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report
							The ground elevation shown above is an estimation only. It is based on our interpretations of pub-lished maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
10 -							
15 -							
20							BORING LOG
		Vi		10	Sz		TUCSON PAVEMENT RECONSTRUCTION PROGRAM - TUCSON BLVD NORTH FORT LOWELL ROAD TO GLENN STREET TUCSON, ARIZONA
		V	J				PROJECT NO. DATE FIGURE 604817002 12/15 A-3

APPENDIX B

LABORATORY TESTING

Classification

Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings in Appendix A.

Gradation Analysis

One gradation analysis test was performed on a selected representative soil sample in general accordance with ASTM D 422. The grain-size distribution curves are shown in Figures B-1 and B-2. These test results were utilized in evaluating the soil classification in accordance with the USCS.

Atterberg Limits

Tests were performed on a selected representative fine-grained soil sample to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. These test results were utilized to evaluate the soil classification in accordance with the USCS. The test results and classifications are shown on Figure B-3.

SYMBOL	LOCATION	DEPTH (FT)	liquid Limit, ll	PLASTIC LIMIT, PL	PLASTICITY INDEX, PI	USCS CLASSIFICATION (Fraction Finer Than No. 40 Sieve)	USCS (Entire Sample)
•	B-1	1.5-3.0	42	20	22	CL	CL
-	В-3	1.5-3.0	36	20	16	CL	CL

Ninyo «	Moore	ATTERBERG LIMITS TEST RESULTS	FIGURE
PROJECT NO.	DATE	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - TUCSON BOULEVARD	D 2
604817002	12/15	TUCSON, ARIZONA	D-3

APPENDIX C

PAVEMENT AND CORE SUMMARY

TUCSON PAVEMENT REHABILITATION PROGRAM - FY 16

TUCSON BOULEVARD (FORT LOWELL RD TO GLENN STREET) - PAVEMENT AND CORE SUMMARY

No.	Location	ApproximateRecoveredAC thicknessAC(in)*Thickness(in)(in)		Core Description	Pavement Condition
B-1	Southbound, 380 feet south of Fort Lowell Road	5	5	Two lifts, 2" and 3", few voids.	Extensive transverse, longitudinal, alligator and irregular cracking, some sealed, patches.
В-2	Northbound, 80 feet north of Blacklidge Drive	4	4	Two lifts, 1.5" and 2.5", bottom lift decomposed, numerous voids.	Extensive transverse, longitudinal, alligator and irregular cracking, some sealed, patches, developing potholes.
В-3	Soutnbound, 270 feet north of Glenn Street	4	4	Two lifts, 1.5" and 2.5", few voids.	Extensive transverse, longitudinal, alligator and irregular cracking, some sealed, patches.

Notes:

* Measured in the boring

APPENDIX D

TRAFFIC DATA

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-006 Station ID: Wed 10/14/2015 Tucson Blvd. btwn. Blacklidge Dr. & Hedrick Dr. 32.262981 -110.935175 Latitude: 0' 0.000 Undefined

Northbound												La		Undelined
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/14/15	0	13	1	0	0	0	0	0	0	0	0	0	0	14
01:00	0	8	4	0	0	0	0	0	0	0	0	0	0	12
02:00	1	6	1	0	0	0	0	0	0	0	0	0	0	8
03:00	0	3	0	0	0	0	0	0	0	0	0	0	0	3
04:00	0	2	2	0	0	0	0	0	0	0	0	0	0	4
05:00	0	19	4	0	0	0	0	0	0	0	0	0	0	23
06:00	0	60	4	0	0	0	0	0	0	0	0	0	0	64
07:00	0	207	36	1	0	0	0	1	0	0	0	0	0	245
08:00	0	292	24	1	0	1	3	1	1	1	0	0	0	324
09:00	0	178	37	0	0	2	0	0	1	1	0	0	1	220
10:00	1	172	39	1	0	0	1	3	0	0	1	1	0	219
11:00	0	179	29	0	0	1	1	2	1	0	0	1	1	215
12 PM	0	219	42	1	1	0	0	0	1	0	0	1	0	265
13:00	0	205	31	1	0	0	3	2	1	1	0	0	1	245
14:00	0	186	43	0	1	0	1	3	0	1	0	1	1	237
15:00	1	224	38	5	0	1	4	2	0	3	0	1	0	279
16:00	0	252	50	2	1	1	4	2	1	0	1	0	1	315
17:00	0	264	30	3	1	0	4	3	1	0	0	0	2	308
18:00	0	181	19	3	1	0	2	0	1	0	0	0	0	207
19:00	0	130	14	0	0	0	1	0	0	0	0	0	1	146
20:00	0	108	6	0	0	0	0	0	1	0	0	0	0	115
21:00	0	68	6	0	0	0	0	0	0	0	0	0	0	74
22:00	0	40	7	0	0	0	0	0	0	0	0	0	0	47
23:00	0	27	4	0	0	0	0	0	0	0	0	0	0	31
Day Total	3	3043	471	18	5	6	24	19	9	7	2	5	8	3620
Percent	0.1%	84.1%	13.0%	0.5%	0.1%	0.2%	0.7%	0.5%	0.2%	0.2%	0.1%	0.1%	0.2%	
AM Peak	02:00	08:00	10:00	07:00		09:00	08:00	10:00	08:00	08:00	10:00	10:00	09:00	08:00
Vol.	1	292	39	1		2	3	3	1	1	1	1	1	324
PM Peak	15:00	17:00	16:00	15:00	12:00	15:00	15:00	14:00	12:00	15:00	16:00	12:00	17:00	16:00
Vol.	1	264	50	5	1	1	4	3	1	3	1	1	2	315
Grand Total	3	3043	471	18	5	6	24	19	9	7	2	5	8	3620
Percent	0.1%	84.1%	13.0%	0.5%	0.1%	0.2%	0.7%	0.5%	0.2%	0.2%	0.1%	0.1%	0.2%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-006 Station ID: Wed 10/14/2015 Tucson Blvd. btwn. Blacklidge Dr. & Hedrick Dr. 32.262981 -110.935175 Latitude: 0' 0.000 Undefined

Southbound												La		Undelined
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/14/15	0	10	2	0	0	0	0	0	0	0	0	0	0	12
01:00	0	8	2	0	1	0	0	0	0	0	0	0	0	11
02:00	0	5	3	0	0	0	0	0	0	0	0	0	0	8
03:00	0	5	2	0	0	0	0	0	0	0	0	0	0	7
04:00	0	5	3	0	0	0	0	0	0	0	0	0	0	8
05:00	0	9	9	0	0	0	1	0	0	0	0	0	0	19
06:00	0	33	18	0	2	1	0	0	0	0	0	0	0	54
07:00	0	93	28	0	0	3	2	0	0	0	0	0	0	126
08:00	1	155	53	1	3	1	0	1	0	0	0	0	0	215
09:00	0	93	37	2	2	2	1	0	0	0	0	0	0	137
10:00	0	118	44	0	1	0	1	0	0	0	0	0	0	164
11:00	1	134	46	0	0	3	1	0	0	0	0	0	0	185
12 PM	0	124	52	3	0	0	0	0	0	0	1	0	0	180
13:00	0	144	37	0	1	4	1	1	0	0	0	1	0	189
14:00	0	135	42	2	1	1	0	1	0	0	0	0	0	182
15:00	0	140	40	1	3	1	1	0	0	0	0	0	0	186
16:00	1	170	60	1	4	1	0	0	1	0	0	0	0	238
17:00	1	240	45	0	2	3	0	1	0	0	0	0	0	292
18:00	0	182	38	0	0	3	0	1	0	0	2	0	1	227
19:00	0	82	14	0	2	0	0	0	0	0	0	0	0	98
20:00	1	90	26	0	1	2	0	1	0	0	0	0	0	121
21:00	0	50	15	0	0	1	0	0	0	0	0	0	0	66
22:00	0	42	7	0	0	0	0	0	0	0	0	0	0	49
23:00	0	28	5	0	0	0	0	0	0	0	0	0	0	33
Day	5	2095	628	10	23	26	8	6	1	0	3	1	1	2807
Iotal	0.00/	74.00/	00.40/	0.40/	0.00/	0.00/	0.00/	0.00/	0.00/	0.00/	0.40/	0.00/	0.00/	
Percent	0.2%	/4.6%	22.4%	0.4%	0.8%	0.9%	0.3%	0.2%	0.0%	0.0%	0.1%	0.0%	0.0%	00.00
AM Peak	00:00	08:00	08:00	09:00	08:00	07:00	07:00	08:00						08:00
VOI.	10.00	155	53	2	3	3	<u> </u>	10.00	40.00		40.00	10.00	10.00	215
PM Peak	16:00	17:00	16:00	12:00	16:00	13:00	13:00	13:00	16:00		18:00	13:00	18:00	17:00
VOI.	1	240	60	3	4	4	1	1	1		2	1	1	292
Grand	5	2095	628	10	23	26	8	6	1	٥	3	1	1	2807
Total			020											2001
Percent	0.2%	74.6%	22.4%	0.4%	0.8%	0.9%	0.3%	0.2%	0.0%	0.0%	0.1%	0.0%	0.0%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 520.316.6745

Site Code: 15-1283-006 Station ID: Wed 10/14/2015 Tucson Blvd. btwn. Blacklidge Dr. & Hedrick Dr. 32.262981 -110.935175 Latitude: 0' 0.000 Undefined

Northbound,	Southbou	nd										La		Ondenne
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/14/15	0	23	3	0	0	0	0	0	0	0	0	0	0	26
01:00	0	16	6	0	1	0	0	0	0	0	0	0	0	23
02:00	1	11	4	0	0	0	0	0	0	0	0	0	0	16
03:00	0	8	2	0	0	0	0	0	0	0	0	0	0	10
04:00	0	7	5	0	0	0	0	0	0	0	0	0	0	12
05:00	0	28	13	0	0	0	1	0	0	0	0	0	0	42
06:00	0	93	22	0	2	1	0	0	0	0	0	0	0	118
07:00	0	300	64	1	0	3	2	1	0	0	0	0	0	371
08:00	1	447	77	2	3	2	3	2	1	1	0	0	0	539
09:00	0	271	74	2	2	4	1	0	1	1	0	0	1	357
10:00	1	290	83	1	1	0	2	3	0	0	1	1	0	383
11:00	1	313	75	0	0	4	2	2	1	0	0	1	1	400
12 PM	0	343	94	4	1	0	0	0	1	0	1	1	0	445
13:00	0	349	68	1	1	4	4	3	1	1	0	1	1	434
14:00	0	321	85	2	2	1	1	4	0	1	0	1	1	419
15:00	1	364	78	6	3	2	5	2	0	3	0	1	0	465
16:00	1	422	110	3	5	2	4	2	2	0	1	0	1	553
17:00	1	504	75	3	3	3	4	4	1	0	0	0	2	600
18:00	0	363	57	3	1	3	2	1	1	0	2	0	1	434
19:00	0	212	28	0	2	0	1	0	0	0	0	0	1	244
20:00	1	198	32	0	1	2	0	1	1	0	0	0	0	236
21:00	0	118	21	0	0	1	0	0	0	0	0	0	0	140
22:00	0	82	14	0	0	0	0	0	0	0	0	0	0	96
23:00	0	55	9	0	0	0	0	0	0	0	0	0	0	64
Day	0	E120	1000	20	20	22	20	25	10	7	F	6	0	6407
Total	0	5156	1099	20	20	52	52	20	10	1	5	0	9	0427
Percent	0.1%	79.9%	17.1%	0.4%	0.4%	0.5%	0.5%	0.4%	0.2%	0.1%	0.1%	0.1%	0.1%	
AM Peak	02:00	08:00	10:00	08:00	08:00	09:00	08:00	10:00	08:00	08:00	10:00	10:00	09:00	08:00
Vol.	1	447	83	2	3	4	3	3	1	1	1	1	1	539
PM Peak	15:00	17:00	16:00	15:00	16:00	13:00	15:00	14:00	16:00	15:00	18:00	12:00	17:00	17:00
Vol.	1	504	110	6	5	4	5	4	2	3	2	1	2	600
Grand	8	5138	1099	28	28	32	32	25	10	7	5	6	9	6427
Total Percent	0.1%	79.9%	17.1%	0.4%	0.4%	0.5%	0.5%	0.4%	0.2%	0.1%	0.1%	0.1%	0.1%	5.21

APPENDIX E

PAVEMENT OPTIMIZATION DESIGN ANALYSIS BY TENSAR

SpectraPave4 PRO™ Tensar. Pavement Optimization Design Analysis

Design Parameters for AASHTO (1993) Equation

Reliability (%)	= 95	Initial Serviceability	= 4.5
Standard Normal Deviate	= -1.645	Terminal Serviceability	= 2.5
Standard Deviation	= 0.4	Change in Serviceability	= 2

Aggregate fill shall conform to following requirement:

D50 <= 27mm (Base course)

Unstabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
ABC	Aggregate Base Course	15	0.140	1.25

Unstabilized Pavement

Stabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
MSL	Mechanically Stabilized Base Cour	15	0.289	1.25

Stabilized Pavement

ACC1 5.00 (in) ACC1 5.50 (in) **MSL** 5.00 (in) Tensar TX5 (Overlap=1.0ft) ABC 8.00 (in) Subgrade Modulus = 8,824 (psi) Subgrade Modulus = 8,824 (psi) Structural Number = 3.820 Structural Number = 4.006 Calculated Traffic (ESALs) = 2,730,000 Calculated Traffic (ESALs) = 3,757,000

LIMITATIONS OF THE REPORT

The designs, illustrations, information and other content included in this report are necessarily general and conceptual in nature, and do not constitute engineering advice or any design intended for actual construction. Specific design recommendations can be provided as the project develops.			
Project Name	Tucson North		
Company Name	Tensar		
Designer	Schlessinger	Date	12/11/15

This document was prepared using SpectraPave4 PRO™ Software Version 4.6.1 Developed by Tensar International Corporation Copyright 1998 - 2014, All Rights Reserved.

PAVEMENT EVALUATION TUCSON PAVEMENT RECONSTRUCTION PROGRAM TUCSON BOULEVARD, GLENN STREET TO GRANT ROAD TUCSON, ARIZONA

PREPARED FOR:

Kimley-Horn & Associates, Inc. 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

PREPARED BY:

Ninyo & Moore Geotechnical and Environmental Sciences Consultants 1991 East Ajo Way, Suite 145 Tucson, Arizona 85713

> December 15, 2015 Project No. 604817002

1991 East Ajo Way, Suite 145 • Tucson, Arizona 85713 • Phone (520) 577-7600 • Fax (520) 577-7606

December 15, 2015 Project No. 604817002

Mr. Rick Solis, P.E. Kimley-Horn 333 East Wetmore Road, Suite 280 Tucson, Arizona 85705

Subject: Pavement Evaluation Tucson Pavement Reconstruction Program – Tucson Boulevard Glenn Street to Grant Road Tucson, Arizona

Dear Mr. Solis:

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, Ninyo & Moore has performed a pavement evaluation for the above-referenced site. The attached report presents our methodology, findings, conclusions, and recommendations regarding the geotechnical conditions at the project site.

We appreciate the opportunity to be of service to you during this phase of the project.

Fred Narcaroti Principal/Tucson Office Manager

MJK/DT/FFN/tlp

Distribution: (1) Addressee (Electronic Copy)

TABLE OF CONTENTS

1.	INTRODUCTION1								
2.	SCOPE OF SERVICES								
3.	SITE DESCRIPTION								
4.	PROPOSED CONSTRUCTION								
5.	EXISTING PAVEMENT CONDITION								
6.	FIELD EXPLORATION AND LABORATORY TESTING								
7.	SUBSURFACE CONDITIONS								
8.	CONCLUSIONS								
9.	RECOMMENDATIONS59.1. Recommended Pavement Structural Sections59.2. Earthwork69.2.1. Site Preparation69.2.2. Excavations69.2.3. Fill Materials79.2.4. Grading and Subgrade Preparation79.3. Pavement Design Summary89.3.1. Traffic89.3.2. R-Value and Resilient Modulus89.3.3. Statistical Parameters99.3.4. Serviceability Index99.3.5. Layer Coefficients109.3.6. Asphalt Pavement Section Recommendations10								
10.	SITE DRAINAGE								
11.	PRE-CONSTRUCTION CONFERENCE11								
12.	CONSTRUCTION OBSERVATION AND TESTING11								
13.	LIMITATIONS								
14.	. REFERENCES								

TABLES

Table 1 – R-value Summary	8
Table 2 – Summary of Statistical Parameters	9
Table 3 – Summary of Serviceability Parameters	10
Table 4 – Structural Pavement Sections for 20-Year Design Life	11

Figures

Figure 1 – Site Location Figure 2 – Boring Locations

Appendices

Appendix A – Boring Logs

Appendix B – Laboratory Testing

Appendix C – Pavement and Core Summary

Appendix D – Traffic Data

Appendix E – Pavement Optimization Design Analysis by Tensar

1. INTRODUCTION

In accordance with our proposal dated August 12, 2015, and your authorization on September 21, 2015, we have performed a pavement evaluation for the Tucson Boulevard Pavement Reconstruction project between Glenn Street and Grant Road, in Tucson, Arizona. The purpose of our evaluation was to assess the pavement and subgrade conditions along the project alignment in order to provide geotechnical recommendations for design and construction. This report presents the results of our evaluation, conclusions, and recommendations regarding the proposed construction.

2. SCOPE OF SERVICES

The scope of our services generally included:

- Preparing a field testing plan and associated permit application for submittal to the City of Tucson (COT).
- Conducting a visual reconnaissance of the pavement along the alignment and marking out the boring locations.
- Notifying Arizona811 of our boring locations prior to conducting the field work.
- Arranging for traffic control measures to conduct the field work.
- Coring the existing asphaltic concrete (AC) pavement at three locations along the project alignment.
- Exploring the subsurface soils within the project limits by drilling, logging, and sampling three exploratory soil borings to approximate depths of 3 feet below ground surface (bgs). The boring logs are presented in Appendix A.
- Performing laboratory tests on selected samples collected from our borings to evaluate gradation and Atterberg limits. The results of the laboratory tests are included in Appendix B.
- Preparing this report presenting our findings, conclusions and recommendations regarding the proposed reconstruction.

Our scope of services did not include environmental consulting services such as hazardous waste sampling or analytical testing at the site. A detailed scope of services and estimated fee for such services can be provided upon request.

3. SITE DESCRIPTION

The project site is located in Sections 5 and 32 of Township 13 South, Range 14 East relative to the Gila and Salt River Base Line and Meridian. The project alignment extends along Tucson Boulevard between Glenn Street and Grant Road in Tucson, Arizona (Figure 1).

At the time of our evaluation residential and commercial developments existed along the project alignment. The roadway section consisted of one travel lane in each direction, a center lane, concrete sidewalks on the east and west side of the roadway, and concrete curb along most of the project alignment.

4. PROPOSED CONSTRUCTION

The COT has identified several segments of the existing street network for reconstruction and/or rehabilitation in fiscal year (FY) 2016 under Bid Package 2. The scope of this report includes Tucson Boulevard between Glenn Street and Grant Road. The project alignment is approximately 0.5-mile long.

We understand that the COT anticipates full-depth reconstruction of the existing roadway along the project alignment. The City proposes a new pavement section consisting of 5 inches of AC per of the COT Department of Transportation Standard Specifications Section 406 over 5 inches of aggregate base (AB) per Section 303 of the COT Standard Specifications.

We further understand that the COT intends to use Tucson Department of Transportation (TDOT) AC Mix No. 2 PG 76-22TR+ for the surface layer and TDOT AC Mix No. 1 PG 70-10 for the underlying layer. Both layers are proposed to be 2.5 inches thick.

Due to conflicts with shallow utility lines, subgrade improvement by overexcavation will not be performed and the new pavement section will be constructed on subgrade improved with Geogrid (Tensar Geogrid TX5 or equivalent).

The scope of this exploration included evaluation of the existing pavement section and subgrade soils in order to provide recommendations for pavement reconstruction in accordance with the current COT practice. Calculations for the new pavement section supporting the new construction proposed by the COT are presented in Section 9.3 and in Appendix E of this report.

5. EXISTING PAVEMENT CONDITION

On September 30, 2015, Ninyo & Moore conducted a limited visual evaluation of the pavement surface along the project alignment. Based on our field observations, the AC pavement exhibited signs of severe distress in many locations along the project alignment primarily consisting of extensive block, transverse, irregular and alligator cracking with considering spalling, and potholes. Asphaltic concrete patches were observed at some locations which were probably associated with past maintenance efforts (pothole and crack repairs) or with underground utility work. The crack widths generally varied between hairline (less than 1/8-inch) to over 1 ½ inches.

In our opinion, the distress observed along the project alignment indicates structural failure and is related to a combination of pavement age, subgrade condition, traffic, and environmental impacts.

6. FIELD EXPLORATION AND LABORATORY TESTING

On September 30, 2015, Ninyo & Moore conducted a geotechnical exploration in order to evaluate the subsurface conditions and collect AC cores and soil samples for laboratory testing. Our evaluation consisted of coring the existing AC pavement, drilling, logging, and sampling three small-diameter borings, denoted as B-1 through B-3, utilizing a CME-75 truck-mounted drill rig equipped with hollow-stem augers. The borings extended to depths of approximately 3 feet bgs. The approximate locations of the borings are depicted on Figure 2.

Ninyo & Moore personnel logged the borings in general accordance with the Unified Soil Classification System (USCS) and American Society for Testing and Materials (ASTM) D 2488 by observing cuttings and drive samples. Collected ring samples were trimmed in the field, wrapped in plastic bags, and placed in cylindrical plastic containers to retain in-place moisture conditions.

The soil samples collected from our drilling activities were transported to the Ninyo & Moore laboratory in Tucson, Arizona for geotechnical laboratory testing. The tests included gradation and Atterberg limits. A description of each laboratory test method and the test results are presented in Appendix B.

7. SUBSURFACE CONDITIONS

Our knowledge of the subsurface conditions at the project site is based on our field exploration, laboratory testing, and general experience in the area. More detailed stratigraphic information is presented on the boring logs in Appendix A, attached to this report. The boring logs contain our field and laboratory test results, as well as our interpretation of conditions believed to exist between actual samples retrieved. Therefore, these boring logs contain both factual and interpretive information. Lines delineating subsurface strata on the boring logs are intended to group soils having similar engineering properties and characteristics. They should be considered approximate as the actual transition between soil types (strata) may be gradual. A key to the soil symbols and terms used on the boring logs is provided in Appendix A.

7.1. Asphaltic Concrete

Asphaltic concrete pavement was encountered at the surface of each of our borings. The AC thickness varied between approximately 4 and 5 inches, in our borings. It should be noted that the thickness of the AC pavement between the sampling locations may vary and could be different from that encountered at our sampling locations. Detailed core descriptions are presented in Appendix C.

inyo & Moor

Aggregate base with an approximate thickness of 3 inches was encountered in our Boring B-2. In the locations of our other borings, it is possible the AB material blended with the native subgrade soils, such that delineation of the AB/subgrade interface was not easily interpreted.

7.2. Alluvium

Native alluvial soils were encountered below the pavement section, and extended to the boring termination depths. The alluvium generally consisted of medium dense to dense, clayey sand with varying amounts of gravel and scattered caliche cementation.

8. CONCLUSIONS

Based on the results of our visual and subsurface evaluations, laboratory testing, and data analysis, geotechnical considerations include the following:

- The on-site soils generally include sandy clays, with a plasticity index (PI) value varying between 13 and 17. Many on-site soils may be sensitive to moisture content fluctuations and may be difficult to compact especially at higher moisture contents. The contractor should be aware of this condition.
- Due to the relatively widely spaced nature of our borings, soil conditions may differ from what was observed during our field exploration.
- The pavement exhibits significant distress in many locations along the project alignment consisting mainly of extensive block, transverse, irregular and alligator cracking with considering spalling, and potholes.
- Full-depth pavement reconstruction is considered for this project as proposed by the COT.

9. **RECOMMENDATIONS**

The following sections present our geotechnical recommendations for the project. If the proposed construction is changed from that discussed in this report, Ninyo & Moore should be contacted for additional recommendations.

9.1. Recommended Pavement Structural Sections

The recommended pavement sections are presented in the table below:

Pavement Section	Service Life (years)	AC (in) ¹	$AB(in)^2$				
COT Preferred Pavement with Geogrid	20	5	5				
Alternative Pavement Section without Geogrid	20	5.5	8				
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.							

9.2. Earthwork

The following sections provide our earthwork recommendations for this project. In general, the earthwork specifications contained in the *City of Tucson/Pima County Standard Specifications for Public Improvements, 2003 Edition (COT/PC Specifications)* are expected to apply unless specifically noted.

9.2.1. Site Preparation

Construction areas should be cleared of deleterious materials, if any are present, including abandoned utilities, construction debris, vegetation, and any other material that might interfere with the performance or progress of the work. These materials should be disposed of at a legal dumpsite. Existing features that call for relocation or removal and extend below finish grade, if present, should be removed, and the resulting excavations backfilled with engineered fill.

9.2.2. Excavations

Our evaluation of the excavation characteristics of the on-site soils is based on the results of our exploratory borings, site observations, and experience with similar materials.

9.2.3. Fill Materials

Soils with PI values of 15 or less (as evaluated by ASTM D 4318) are generally suitable for use as engineered fill. Our Atterberg limits test indicated PI values ranging between 13 and 17. Based on this test result, some of the on-site soils are not suitable for re-use as engineered fill.

Engineered fill should not include organic material, construction debris, or other nonsoil fill materials. Rock particles and clay lumps should not be larger than 4 inches in dimension. Unsuitable material should be disposed of off-site or in non-structural areas.

9.2.4. Grading and Subgrade Preparation

In general, grading operations should be performed in accordance with Section 205 of the COT/PC Specifications.

Due to potential conflicts with underground utilities, we recommend that the subgrade be improved by the application of Geogrid (Tensar Geogrid TX5 or equivalent). Geogrid should be placed in accordance with the manufacturer's instructions.

Alternatively, if Geogrid is not applied we recommend new pavements be supported on 6 inches of subgrade that is compacted by appropriate mechanical methods to a relative compaction of 95 percent as evaluated by ASTM D 698 at a moisture content generally near optimum. The thickness of the improvement zone should be measured from the bottom of the AB layer.

In areas where excessive moisture is encountered so that the above compaction cannot be achieved and/or the subgrade surface is unstable and yielding (pumping) under the roller wheels, subgrade soils should be scarified to a depth of 12 inches, aerated, and recompacted as specified above. Alternatively, subgrade soils in problem areas should be and replaced with engineered fill to a depth of 12 inches below the bottom of the AB.

9.3. Pavement Design Summary

The following sections present our design assumptions and recommendations for the new flexible pavement section of Tucson Boulevard between Glenn Street and Grant Road, as this roadway is scheduled for full-depth pavement reconstruction.

The pavement section was developed using the Active Practices Guidelines issued by the COT Department of Transportation (Guidelines) and the Arizona Department of Transportation (ADOT) Preliminary Engineering and Design Manual (PEDM). We assumed that the subgrade will be improved by the application of Geogrid or overexcavation, as outlined in Section 9.2.4 of this report. The new pavement sections are designed for a 20-year service life.

9.3.1. Traffic

The future traffic numbers used in this report are based on traffic counts provided by Kimley-Horn and Associates, Inc. (KHA), and later communication with the KHA. This information is presented in Appendix D. Based on the above information, and using the procedures outlined in the Guidelines and PEDM, the design number of equivalent single axle loads (ESALs) for the design lane during the 20-year design period was calculated as approximately 3,542,330.

9.3.2. R-Value and Resilient Modulus

The analysis for the design R-value for the pavement section has been performed based on procedures detailed in the Guidelines and the PEDM, using correlated R-values. The correlated R-values were derived from the PI and percent passing No. 200 Sieve test results. A summary of the R-values for this project is presented in Table 1 below:

Location	Sample Depth (ft)	Correlated R-Value		
B-1	1.5-3.0	29		
B-3	1.5-3.0	48		

 Table 1 – R-value Summary

In the interest of conservatism, we recommend that an R-value of 25 be used for pavement design for this project.

If the project needs fill from an off-site source, we recommend the soils used for subgrade support should have an R-value of 25 or more. If during construction, the subgrade is found to vary from the expected soil conditions, we should be contacted so we may re-evaluate our recommended R-values. Based on the above design R-values, the design subgrade resilient modulus (M_R) value of 10,844 pounds per square inch (psi) was calculated in accordance with the Guidelines.

9.3.3. Statistical Parameters

A standard deviation of 0.40 was used for design of the flexible pavement in accordance with the Guidelines. The level of reliability and standard normal deviation (Z_R) values were selected in accordance with the Guidelines for the arterial functional classification. Their respective values are presented in the table below:

 Table 2 – Summary of Statistical Parameters

Roadway	Functional Classification	Standard Deviation	Level of Reliability	Standard Normal Deviation
Tucson Boulevard Glenn Street to Grant Road	Arterial	0.40	95 %	-1.645

9.3.4. Serviceability Index

Initial and terminal serviceability indices were selected for the pavement design of the roadways in accordance with the Guidelines. A summary of the serviceability indices for each roadway is provided in the table below:

Roadway	Functional Classification	Initial Serviceability Index	Terminal Serviceability Index	Change in Serviceability
Tucson Boulevard Glenn Street to Grant Road	Arterial	4.5	2.5	2.0

Table 3 – Summary of Serviceability Parameters

9.3.5. Layer Coefficients

The following structural coefficients were used for the pavement structure in accordance with the Guidelines:

- AC: 0.44.
- AB: 0.14.

A drainage coefficient of 1.25 was used for the AB coefficient as recommended in the Guidelines.

As mentioned in Section 4 above, due to conflicts with existing shallow utilities, it is recommended that the subgrade be improved using Geogrid (Tensar Geogrid TX5 or equivalent). In this case the AB layer coefficient is 0.286.

9.3.6. Asphalt Pavement Section Recommendations

The structural number (SN) was calculated based on the parameters described above. The table below presents the calculated SN value and the recommended structural pavement sections. The AC thickness meets the COT requirements. Supporting documentation of the pavement optimization design using Geogrid is presented in Appendix E:

Roadway	SN	$AC (in)^1$	$AB(in)^2$				
COT Preferred Pavement with Geogrid	3.99	5	5				
Alternative Pavement without Geogrid	3.76	5.5	8				
Notes: ¹ TDOT AC Mix No. 2 PG 76-22TR+ as the surface mix and TDOT AC Mix No. 1 PG 70-10 for the underlying layers per Section 406 of the COT Specifications. ² AB per Section 303 of the COT Specifications.							

 Table 4 – Structural Pavement Sections for 20-Year Design Life

The above pavement structural section has been designed with the assumption that the subgrade is prepared by as recommended in Section 9.2.4.

10. SITE DRAINAGE

Surface drainage should be provided to divert water away from paved surfaces. Surface water should also not be permitted to pond on or below pavement areas. Positive drainage for this project is defined as a slope of 2 percent or more for a distance of 5 feet or more away from the pavements. To deter accumulation of water below the new pavement sections, the bottom of the overexcavated zone below the new pavement should be sloped toward the edges of the roadway.

11. PRE-CONSTRUCTION CONFERENCE

We recommend that a pre-construction conference be held. Representatives of the owner, the civil engineer, Ninyo & Moore, and the contractor should be in attendance to discuss the project plans and schedule. Our office should be notified if the project description included herein is incorrect or if the project characteristics are significantly changed.

12. CONSTRUCTION OBSERVATION AND TESTING

During construction operations, we recommend that Ninyo & Moore perform observation and testing services for the project. These services should be performed to evaluate exposed subgrade conditions, including the extent and depth of overexcavation, to evaluate the suitability of

proposed borrow materials for use as engineered fill and to observe placement and test compaction of fill soils. Qualified subcontractors utilizing appropriate techniques and construction materials should perform construction of the proposed improvements.

13. LIMITATIONS

The field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation will be performed upon request. Please also note that our evaluation was limited to assessment of the geotechnical aspects of the project, and did not include evaluation of structural issues, environmental concerns, or the presence of hazardous materials.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document.

This report is intended for design purposes only. It does not provide sufficient data to prepare an accurate bid by contractors. It is suggested that the bidders and their geotechnical consultant perform an independent evaluation of the subsurface conditions in the project areas. The independent evaluations may include, but not be limited to, review of other geotechnical reports prepared for the adjacent areas, site reconnaissance, and additional exploration and laboratory testing.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are encountered, our office should be notified and additional recommendations, if warranted, will be provided upon request. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

14. **REFERENCES**

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards.

- Arizona Department of Transportation (ADOT), 1989, Preliminary Engineering and Design Manual, Materials Section, 3rd Edition: dated March.
- City of Tucson, Arizona, Department of Transportation, Engineering Division, 1987, Active Practices Guidelines: dated June 1.

Ninyo & Moore, In-house proprietary information.

APPENDIX A

BORING LOGS

Field Procedure for the Collection of Relatively Undisturbed Samples

Relatively undisturbed soil samples were obtained in the field using the following methods.

The Modified Split-Barrel Drive Sampler

The sampler, with an external diameter of 3.0 inches, was lined with 1-inch long, thin brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a hammer or the Kelly bar of the drill rig in general accordance with ASTM D 3550. The driving weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer or bar, and the number of blows per foot of driving are presented on the boring logs as an index to the relative resistance of the materials sampled. The samples were removed from the sample barrel in the brass rings, sealed, and transported to the laboratory for testing.

SOIL CLASSIFICATION CHART PER ASTM D 2488							GRAIN SIZE					
DD				SECON	DARY DIVISIONS		DESCRIPTION		SIEVE	GRAIN	APPROXIMATE	
		510113	GR	OUP SYMBOL	GROUP NAME		DESCI		SIZE	SIZE	SIZE	
		CLEAN GRAVEL		GW	well-graded GRAVEL		Во	ulders	> 12"	> 12"	Larger than	
		less than 5% fines		GP	poorly graded GRAVEL						Dasketball-sized	
	GRAVEI			GW-GM	well-graded GRAVEL with silt		Co	bbles	3 - 12"	3 - 12"	Fist-sized to basketball-sized	
	more than	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt							
	coarse	CLASSIFICATIONS 5% to 12% fines		GW-GC	well-graded GRAVEL with clay		Coa	Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized	
	retained on			GP-GC	poorly graded GRAVEL with clay		Gravel				Pag sized to	
	INO. 4 SIEVE	GRAVEL with		GM	silty GRAVEL			Fine	#4 - 3/4"	0.19 - 0.75"	thumb-sized	
COARSE- GRAINED		FINES more than		GC	clayey GRAVEL			0	#10 #1	0.070 0.40"	Rock-salt-sized to	
SOILS		12% fines		GC-GM	silty, clayey GRAVEL			Coarse	#10 - #4	0.079 - 0.19"	pea-sized	
50% retained		CLEAN SAND less than 5% fines	CLEAN SAND		SW	well-graded SAND		Sand Med	Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to
on No. 200 sieve	SAND 50% or more of coarse fraction passes No. 4 sieve			SP	poorly graded SAND						rock-salt-sized	
		SAND with DUAL CLASSIFICATIONS 5% to 12% fines		SW-SM	well-graded SAND with silt		Fine		#200 - #40	0.0029 -	Flour-sized to	
			SAND with DUAL	SP-SM	poorly graded SAND with silt					0.017	30gai-3i2eu	
				SW-SC	well-graded SAND with clay		Fines		Passing #200	< 0.0029"	Flour-sized and smaller	
				SP-SC	poorly graded SAND with clay							
		SAND with FINES more than 12% fines		SM	silty SAND		PLASTICITY CHART				•	
				SC	clayey SAND							
				SC-SM	silty, clayey SAND		7					
				CL	lean CLAY		° 6					
	SILT and	INORGANIC		ML	SILT		(Id) 5					
	CLAY liquid limit			CL-ML	silty CLAY			D		CH or OF		
FINE-	less than 50%	OBCANIC		OL (PI > 4)	organic CLAY		≚ 3	p				
SOILS		ORGANIC		OL (PI < 4)	organic SILT			D	CL or (WH or OH	
50% or				СН	fat CLAY		I SV 1					
No. 200 sieve	SILT and CLAY	INORGANIC		MH	elastic SILT			CL -	ML ML or	OL		
	liquid limit 50% or more	OPCANIC		OH (plots on or above "A"-line)	organic CLAY			0 10	20 30 40	50 60 70	80 90 100	
		URGANIC		OH (plots below "A"-line)	organic SILT				LIQUID	LIMIT (LL), %	5	
	Highly C	Organic Soils		PT	Peat							

APPARENT DENSITY - COARSE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
DENSITY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Loose	≤4	≤ 8	<u>≤</u> 3	≤ 5		
Loose	5 - 10	9 - 21	4 - 7	6 - 14		
Medium Dense	11 - 30	22 - 63	8 - 20	15 - 42		
Dense	se 31 - 50 64 - 105		21 - 33	43 - 70		
Very Dense	> 50	> 105	> 33	> 70		

Ninyo & Moore

CONSISTENCY - FINE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER		
CONSIS- TENCY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	
Very Soft	< 2	< 3	< 1	< 2	
Soft	2 - 4	3 - 5	1 - 3	2 - 3	
Firm	5 - 8	6 - 10	4 - 5	4 - 6	
Stiff	9 - 15	11 - 20	6 - 10	7 - 13	
Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26	
Hard	> 30	> 39	> 20	> 26	

USCS METHOD OF SOIL CLASSIFICATION

Explanation of USCS Method of Soil Classification DATE

DEPTH (feet)	Bulk SAMPLES	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BOR	ING LOG EX	PLANATION S	SHEET	
0							Bulk sample.				
							Modified split-barrel	drive sampler. lified split-barrel dri	ve samnler		
							Sample retained by others.				
							Standard Penetration	Test (SPT).			
5 -	\Box						No recovery with a SI	PT.			
		XX/XX					Shelby tube sample. I	Distance pushed in in	nches/length of sample	recovered in inches.	
							No recovery with She	lby tube sampler.			
							Continuous Push Sam	ple.			
			Ş				Seepage.				
10-			ļi. ₩ļi				Groundwater encount Groundwater measure	ered during drilling.			
						-					
						SM	MAJOR MATERIAL Solid line denotes uni	<u>TYPE (SOIL)</u> : t change.			
						CL	Dashed line denotes n	naterial change.			
							Attitudes: Strike/Dip				
							c: Contact				
15 -							J: Joint f: Fracture				
							F: Fault				
							s: Shear				
	$\left \right $						bss: Basal Slide Surfa	ce			
							sz: Shear Zone				
							sbs: Shear Bedding Surface				
							The total depth line is	a solid line that is d	rawn at the bottom of	the boring.	
20							<u> </u>		BORINGLOG	<u> </u>	
			\overline{n}		&	AAn	nre		Explanation of Boring Log Sy	mbols	
			Э					PROJECT NO.	DATE	FIGURE	

IPLES			F)		7	DATE DRILLED 9/30/15 BORING NO. B-1						
eet) SAN	ООТ	(%)	Y (PC	MBOL	MBOL	MBOL	ATION .	ATION.	IFICATION S.C.S.	IFICATION S.C.S.	S.C.S.	GROUND ELEVATION 2,404 ± (MSL) SHEET 1 OF 1
TH (ft	VS/F0	TURE	NSIT				MBO	MBO				METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)
DEP Sulk	BLOV	NOIS'	Y DEI	SΥ	LASS	DRIVE WEIGHT 140 lbs. Automatic DROP 30"						
		-	DR		ō	SAMPLED BY LOGGED BY REVIEWED BY						
0						DESCRIPTION/INTERPRETATION						
					SC	ALLUVIUM:						
						Brown, dry, medium dense, clayey SAND; few gravel; scattered caliche nodules.						
	26											
	20											
						Total Depth = 3 feet. Groundwater not encountered during drilling.						
						Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling						
5						Notes: Crown dwater, though not account and at the time of 1 'll'						
						level due to seasonal variations in precipitation and several other factors as discussed in the report.						
						The ground elevation shown above is an estimation only. It is based on our interpretations						
						of pub-lished maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents						
						not sufficiently accurate for preparing construction ords and design documents.						
10												
15												
20												
				& I		TUCSON PAVEMENT RECONSTRUCTION PROGRAM - TUCSON BLVD						
		73				PROJECT NO. DATE FIGURE						
	,				T	604817002 12/15 A-1						

PLES			F)			DATE DRILLED 10/1/15 BORING NO. B-2
et) SAM	OT	(%)	(PCI	.	NOIT	GROUND ELEVATION 2,413 ± (MSL) SHEET OF
III (fe	/S/FC	'URE	ISITY	MBOI	IFICA S.C.S.	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)
DEP ⁻ iven	BLOW	IOISI	/ DEN	S≺	ASS-U.S	DRIVE WEIGHT 140 lbs. Automatic DROP 30"
	ш	2	DRY		U D	
						DESCRIPTION/INTERPRETATION
					GP	ASPHALT CONCRETE: Approximately 4 1/2 inches thick
					SC	<u>ALLUVIUM</u> : Brown, dry, dense, clayey SAND: few gravel; numerous caliche nodules.
	63					
				2222		Total Depth = 3 feet.
						Groundwater not encountered during drilling.
						Backfilled and asphalt concrete patched on 10/1/15 shortly after completion of drilling.
						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in
						the report.
						The ground elevation shown above is an estimation only. It is based on our interpretations
						not sufficiently accurate for preparing construction bids and design documents.
10						
15						
20						
	A #9					BORING LOG
	₩//	ΠŲ	۱D «	Sz	MQ	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - TUCSON BLVD GLENN STREET TO GRANT ROAD TUCSON, ARIZONA
	V		· 			PROJECT NO. DATE FIGURE 604817002 12/15 A-2

IPLES			F)		7	DATE DRILLED					
eet) SAN	001	(%)∃	Y (PC)L	ATION S.	GROUND ELEVATION 2,421 ± (MSL) SHEET 1 OF 1					
1) HT	WS/F	TUR	ENSIT	YMBC	SIFIC/ S.C.S	SIFIC, S.C.S	SIFIC/ .S.C.S	SIFIC, S.C.S	SIFIC. S.C.S	SIFIC.	METHOD OF DRILLING CME-75, 8" Hollow Stem Auger (Southlands)
DEF Bulk Driven	BLO	MOIS	sy de	S	U CLAS:	DRIVE WEIGHT 140 lbs. Automatic DROP 30"					
			i		0						
0				6777		ASPHALT CONCRETE: Approximately 4 inches thick.					
					50	ALLUVIUM: Brown, dry, very dense, clayey SAND; few to little gravel, scattered caliche nodules.					
	50/3										
	_					Total Depth = 2 1/4 feet. Groundwater not encountered during drilling.					
						Backfilled and asphalt concrete patched on 9/30/15 shortly after completion of drilling.					
						Notes: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report.					
	_					The ground elevation shown above is an estimation only. It is based on our interpretations of pub-lished maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.					
	-										
	_										
10											
	-										
	_										
	_										
15	_										
]										
	-										
	-										
	1										
		<u> </u>	<u> </u>			BORING LOG					
	MĨ	nų	10	&	MO	TUCSON PAVEMENT RECONSTRUCTION PROGRAM - TUCSON BLVD GLENN STREET TO GRANT ROAD TUCSON, ARIZONA					
					V -	PROJECT NO. DATE FIGURE 604817002 12/15 A-3					

APPENDIX B

LABORATORY TESTING

Classification

Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings in Appendix A.

Gradation Analysis

One gradation analysis test was performed on a selected representative soil sample in general accordance with ASTM D 422. The grain-size distribution curves are shown in Figures B-1 and B-2. These test results were utilized in evaluating the soil classification in accordance with the USCS.

Atterberg Limits

Tests were performed on a selected representative fine-grained soil sample to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. These test results were utilized to evaluate the soil classification in accordance with the USCS. The test results and classifications are shown on Figure B-3.

	r			1		11000					
SYMBOL	LOCATION	DEPTH (FT)	LIQUID LIMIT, LL	PLASTIC LIMIT, PL	PLASTICITY INDEX, PI	CLASSIFICATION (Fraction Finer Than No. 40 Sieve)	USCS (Entire Sample)				
•	B-1	1.5-3.0	39	22	17	CL	SC				
•	B-3	1.5-3.0	30	17	13	CL	SC				
PLASTICITY INDEX, PL	ES NON-PLAST		CL or OL ML or C 0 40 LIQ	CH CH DL 50 6 UID LIMIT, L RDANCE WIT	H OT OH MH 0 70 L H ASTM D 4318						
A //											
Ning	n « Wool	r e		TERBE	RG LIMIT	S TEST RESUL	TS FIGURE				
PROJECT NO.	Di	ATE	TUCSON	PAVEMENT RE BETWEE	CONSTRUCTION	PROGRAM - TUCSON BOU T AND GRANT ROAD	B-3				
604817002	12	/15		TUCSON, ARIZONA							

APPENDIX C

PAVEMENT AND CORE SUMMARY

TUCSON PAVEMENT REHABILITATION PROGRAM - FY 16

TUCSON BOULEVARD (GLENN STREET TO GRANT ROAD) - PAVEMENT AND CORE SUMMARY

No.	Location	Approximate AC thickness (in)*	Recovered AC Thickness (in)	Core Description	Pavement Condition	
B-1	Northbound, 425 feet south of Glenn Street	5	5	Two lifts, 2" and 3", few voids.	Extensive transverse, block and irregular cracking, some sealed, raveling, potholes developing. patches.	
B-2	Southbound, 80 feet north of Cooper Street	4.5	4.5	Two lifts, 2" and 2.5", numerous voids.	Extensive transverse, longitudinal, alligator and irregular cracking, some sealed, raveling, patches.	
В-3	Northbound, 340 feet north of Grant Street	4	4	Two lifts, 2.5" and 1.5", bottom lift cracked, numerous voids.	Extensive transverse, longitudinal, alligator and irregular cracking, some sealed, raveling, patches.	

Notes:

* Measured in the boring

APPENDIX D

TRAFFIC DATA

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 (520) 316-6745

Site Code: 15-1283-005 Station ID: Wed 10/14/2015 Tucson Blvd. btwn. Grant Rd. & Water St. 32.251453, -110.935304 Latitude: 0' 0.000 Undefined

Northbound												Lat	litude: 0' 0.000	Undefined
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/14/15	0	30	9	0	0	1	0	0	0	0	0	0	0	40
01:00	0	14	5	0	0	0	0	0	0	0	0	0	0	19
02:00	0	13	3	0	0	0	0	0	0	0	0	0	0	16
03:00	0	8	0	0	0	0	0	1	0	0	0	0	0	9
04:00	0	13	3	0	0	0	0	0	0	0	0	0	0	16
05:00	0	33	7	0	0	0	0	0	0	0	0	0	0	40
06:00	0	73	22	0	1	3	0	1	1	0	1	0	0	102
07:00	1	238	29	2	3	0	0	2	3	1	2	1	4	286
08:00	1	222	41	2	6	1	2	3	0	1	3	0	1	283
09:00	1	216	43	1	0	0	0	1	0	0	1	0	0	263
10:00	1	230	42	2	1	1	0	4	1	0	0	1	0	283
11:00	1	246	46	1	1	0	1	1	4	0	1	0	0	302
12 PM	3	287	52	0	5	0	0	3	1	1	2	0	2	356
13:00	3	275	49	2	2	0	0	1	0	0	2	0	1	335
14:00	4	308	48	0	0	0	1	1	2	0	0	1	5	370
15:00	2	374	49	2	0	0	0	3	0	1	0	1	3	435
16:00	4	431	36	3	2	0	2	4	4	2	1	1	5	495
17:00	8	483	47	4	4	1	0	3	5	0	4	5	3	567
18:00	3	288	25	0	0	0	1	5	1	0	0	0	1	324
19:00	0	203	20	0	0	0	0	1	1	0	0	0	0	225
20:00	0	152	15	0	0	0	0	0	0	0	0	0	0	167
21:00	0	118	8	0	0	0	0	0	0	0	0	0	0	126
22:00	0	74	6	0	0	0	0	0	0	0	0	0	0	80
23:00	0	49	9	0	0	0	0	0	0	0	0	0	0	58
Total	32	4378	614	19	25	7	7	34	23	6	17	10	25	5197
Percent	0.6%	84.2%	11.8%	0.4%	0.5%	0.1%	0.1%	0.7%	0.4%	0.1%	0.3%	0.2%	0.5%	
AM Peak	07:00	11:00	11:00	07:00	08:00	06:00	08:00	10:00	11:00	07:00	08:00	07:00	07:00	11:00
Vol.	1	246	46	2	6	3	2	4	4	1	3	1	4	302
PM Peak	17:00	17:00	12:00	17:00	12:00	17:00	16:00	18:00	17:00	16:00	17:00	17:00	14:00	17:00
Vol.	8	483	52	4	5	1	2	5	5	2	4	5	5	567
Create d														
Grand	32	4378	614	19	25	7	7	34	23	6	17	10	25	5197
I Utal Dereent	0.6%	01 20/	11 00/	0 40/	0 50/	0 10/	0 10/	0.70/	0.40/	0 10/	0.20/	0.20/	0.5%	
Percent	0.0%	84.∠%	11.8%	0.4%	0.5%	0.1%	0.1%	0.7%	0.4%	0.1%	0.3%	0.∠%	0.5%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 (520) 316-6745

Site Code: 15-1283-005 Station ID: Wed 10/14/2015 Tucson Blvd. btwn. Grant Rd. & Water St. 32.251453, -110.935304 Latitude: 0' 0.000 Undefined

Southbound												La	titude: 0 [.] 0.000	
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/14/15	0	20	3	0	0	0	0	0	0	0	0	0	0	23
01:00	0	10	3	0	0	0	0	0	0	0	0	0	0	13
02:00	0	2	0	0	0	0	0	0	0	0	0	0	0	2
03:00	0	5	1	0	1	0	0	1	0	0	0	0	0	8
04:00	0	13	5	0	0	0	0	0	0	0	0	0	0	18
05:00	0	60	18	0	0	1	0	0	0	0	0	0	0	79
06:00	1	178	44	0	0	1	0	0	0	0	0	0	0	224
07:00	2	338	66	2	1	1	0	1	0	0	0	1	1	413
08:00	3	288	37	5	6	2	0	3	2	1	0	1	3	351
09:00	1	233	51	5	1	2	0	0	0	2	0	0	1	296
10:00	0	213	53	3	2	0	0	0	1	0	1	0	0	273
11:00	2	264	58	2	3	1	0	2	0	0	0	0	0	332
12 PM	3	251	57	3	3	3	0	0	1	0	1	1	1	324
13:00	0	261	55	4	2	3	0	2	0	0	2	0	1	330
14:00	2	239	58	3	0	2	0	3	2	0	1	1	4	315
15:00	0	267	57	5	6	2	1	4	4	0	2	0	2	350
16:00	2	289	65	6	3	1	2	3	1	0	2	3	3	380
17:00	2	238	48	3	5	1	0	0	0	1	1	1	0	300
18:00	1	184	28	0	0	1	2	1	1	0	0	0	1	219
19:00	0	201	32	2	2	0	0	1	2	0	0	0	0	240
20:00	0	132	20	0	1	0	0	0	0	0	0	0	0	153
21:00	0	89	10	0	1	0	0	0	0	0	0	0	0	100
22:00	0	45	7	0	0	0	0	0	0	0	0	0	0	52
23:00	0	29	4	0	0	0	0	0	0	0	0	0	0	33
Total	19	3849	780	43	37	21	5	21	14	4	10	8	17	4828
Percent	0.4%	79.7%	16.2%	0.9%	0.8%	0.4%	0.1%	0.4%	0.3%	0.1%	0.2%	0.2%	0.4%	
AM Peak	08:00	07:00	07:00	08:00	08:00	08:00		08:00	08:00	09:00	10:00	07:00	08:00	07:00
Vol.	3	338	66	5	6	2		3	2	2	1	1	3	413
PM Peak	12:00	16:00	16:00	16:00	15:00	12:00	16:00	15:00	15:00	17:00	13:00	16:00	14:00	16:00
Vol.	3	289	65	6	6	3	2	4	4	1	2	3	4	380
Grand Total	19	3849	780	43	37	21	5	21	14	4	10	8	17	4828
Percent	0.4%	79.7%	16.2%	0.9%	0.8%	0.4%	0.1%	0.4%	0.3%	0.1%	0.2%	0.2%	0.4%	

Field Data Services of Arizona

21636 N. Dietz Dr. Maricopa, AZ 85138 (520) 316-6745

Site Code: 15-1283-005 Station ID: Wed 10/14/2015 Tucson Blvd. btwn. Grant Rd. & Water St. 32.251453, -110.935304 Latitude: 0' 0.000 Undefined

Northbound	, Southbou	nd										La	titude: 0' 0.000	0 Undefined
Start		Cars &	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
10/14/15	0	50	12	0	0	1	0	0	0	0	0	0	0	63
01:00	0	24	8	0	0	0	0	0	0	0	0	0	0	32
02:00	0	15	3	0	0	0	0	0	0	0	0	0	0	18
03:00	0	13	1	0	1	0	0	2	0	0	0	0	0	17
04:00	0	26	8	0	0	0	0	0	0	0	0	0	0	34
05:00	0	93	25	0	0	1	0	0	0	0	0	0	0	119
06:00	1	251	66	0	1	4	0	1	1	0	1	0	0	326
07:00	3	576	95	4	4	1	0	3	3	1	2	2	5	699
08:00	4	510	78	7	12	3	2	6	2	2	3	1	4	634
09:00	2	449	94	6	1	2	0	1	0	2	1	0	1	559
10:00	1	443	95	5	3	1	0	4	2	0	1	1	0	556
11:00	3	510	104	3	4	1	1	3	4	0	1	0	0	634
12 PM	6	538	109	3	8	3	0	3	2	1	3	1	3	680
13:00	3	536	104	6	4	3	0	3	0	0	4	0	2	665
14:00	6	547	106	3	0	2	1	4	4	0	1	2	9	685
15:00	2	641	106	7	6	2	1	7	4	1	2	1	5	785
16:00	6	720	101	9	5	1	4	7	5	2	3	4	8	875
17:00	10	721	95	7	9	2	0	3	5	1	5	6	3	867
18:00	4	472	53	0	0	1	3	6	2	0	0	0	2	543
19:00	0	404	52	2	2	0	0	2	3	0	0	0	0	465
20:00	0	284	35	0	1	0	0	0	0	0	0	0	0	320
21:00	0	207	18	0	1	0	0	0	0	0	0	0	0	226
22:00	0	119	13	0	0	0	0	0	0	0	0	0	0	132
23:00	0	78	13	0	0	0	0	0	0	0	0	0	0	91
Total	51	8227	1394	62	62	28	12	55	37	10	27	18	42	10025
Percent	0.5%	82.1%	13.9%	0.6%	0.6%	0.3%	0.1%	0.5%	0.4%	0.1%	0.3%	0.2%	0.4%	
AM Peak	08:00	07:00	11:00	08:00	08:00	06:00	08:00	08:00	11:00	08:00	08:00	07:00	07:00	07:00
Vol	4_	576	104	7	12	4_	2	6	4	2	3	2	5_	699
PM Peak	17:00	17:00	12:00	16:00	17:00	12:00	16:00	15:00	16:00	16:00	17:00	17:00	14:00	16:00
Vol.	10	721	109	9	9	3	4	7	5	2	5	6	9	875
Grand	51	8227	1394	62	62	28	12	55	37	10	27	18	42	10025
i otai	0 50/	00.40/	40.00/	0.00/	0.00/	0.00/	0.40/	0 50/	0.40/	0.40/	0.20/	0.00/	0.40/	
Percent	0.5%	82.1%	13.9%	0.6%	0.6%	0.3%	0.1%	0.5%	0.4%	0.1%	0.3%	0.2%	0.4%	
APPENDIX E

PAVEMENT OPTIMIZATION DESIGN ANALYSIS BY TENSAR

SpectraPave4 PRO™ Spectra average NO Tensar Pavement Optimization Design Analysis

Design Parameters for AASHTO (1993) Equation

Reliability (%)	= 95	Initial Serviceability	= 4.5
Standard Normal Deviate	= -1.645	Terminal Serviceability	= 2.5
Standard Deviation	= 0.4	Change in Serviceability	= 2

Aggregate fill shall conform to following requirement:

D50 <= 27mm (Base course)

Unstabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
ABC	Aggregate Base Course	15	0.140	1.25

Unstabilized Pavement

Subgrade Modulus = 10,844 (psi)

Calculated Traffic (ESALs) = 4,405,000

Structural Number = 3.820

Stabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.440	N/A
MSL	Mechanically Stabilized Base Cour	15	0.286	1.25

ACC1 5.50 (in) ABC 8.00 (in)

Stabilized Pavement

Subgrade Modulus = 10,844 (psi) Structural Number = 3.988 Calculated Traffic (ESALs) = 5,872,000

I IMITATIONS OF THE REPORT

The designs, illustrations, information and other content included in this report are necessarily general and conceptual in nature, and do not constitute engineering advice or any design intended for actual construction. Specific design recommendations can be provided as the project develops.					
Project Name	Tucson South				
Company Name	Tensar				
Designer	Schlessinger	Date	12/11/15		

This document was prepared using SpectraPave4 PRO™ Software Version 4.6.1 Developed by Tensar International Corporation Copyright 1998 - 2014, All Rights Reserved.